环境声音识别的递归量化分析特征

Gerard Roma, Waldo Nogueira, P. Herrera
{"title":"环境声音识别的递归量化分析特征","authors":"Gerard Roma, Waldo Nogueira, P. Herrera","doi":"10.1109/WASPAA.2013.6701890","DOIUrl":null,"url":null,"abstract":"This paper tackles the problem of feature aggregation for recognition of auditory scenes in unlabeled audio. We describe a new set of descriptors based on Recurrence Quantification Analysis (RQA), which can be extracted from the similarity matrix of a time series of audio descriptors. We analyze their usefulness for environmental audio recognition combined with traditional feature statistics in the context of the AASP D-CASE[1] challenge. Our results show the potential of non-linear time series analysis techniques for dealing with environmental sounds.","PeriodicalId":341888,"journal":{"name":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","volume":"28 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Recurrence quantification analysis features for environmental sound recognition\",\"authors\":\"Gerard Roma, Waldo Nogueira, P. Herrera\",\"doi\":\"10.1109/WASPAA.2013.6701890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper tackles the problem of feature aggregation for recognition of auditory scenes in unlabeled audio. We describe a new set of descriptors based on Recurrence Quantification Analysis (RQA), which can be extracted from the similarity matrix of a time series of audio descriptors. We analyze their usefulness for environmental audio recognition combined with traditional feature statistics in the context of the AASP D-CASE[1] challenge. Our results show the potential of non-linear time series analysis techniques for dealing with environmental sounds.\",\"PeriodicalId\":341888,\"journal\":{\"name\":\"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics\",\"volume\":\"28 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WASPAA.2013.6701890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASPAA.2013.6701890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

本文研究了未标记音频中听觉场景识别的特征聚合问题。本文基于递归量化分析(RQA),从音频描述符时间序列的相似度矩阵中提取了一组新的描述符。在AASP D-CASE[1]挑战的背景下,我们分析了它们与传统特征统计相结合对环境音频识别的有用性。我们的结果显示了非线性时间序列分析技术在处理环境声音方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recurrence quantification analysis features for environmental sound recognition
This paper tackles the problem of feature aggregation for recognition of auditory scenes in unlabeled audio. We describe a new set of descriptors based on Recurrence Quantification Analysis (RQA), which can be extracted from the similarity matrix of a time series of audio descriptors. We analyze their usefulness for environmental audio recognition combined with traditional feature statistics in the context of the AASP D-CASE[1] challenge. Our results show the potential of non-linear time series analysis techniques for dealing with environmental sounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信