利用图拉普拉斯特征向量对图像进行期望补丁对数似然去噪

Yibin Tang, Ying Chen, N. Xu, A. Jiang, Yuan Gao
{"title":"利用图拉普拉斯特征向量对图像进行期望补丁对数似然去噪","authors":"Yibin Tang, Ying Chen, N. Xu, A. Jiang, Yuan Gao","doi":"10.1109/ICDSP.2016.7868596","DOIUrl":null,"url":null,"abstract":"Recently, an Expected Patch Log Likelihood (EPLL) method is presented for image denoising, which can well restore details of natural images. However, the EPLL is viewed as a local method, and seldom takes into account the relationship among patches. In this paper, a non-local EPLL algorithm using eigenvectors of the graph Laplacian of patches is proposed to fully exploit such relationship. In detail, the eigenvectors of the graph Laplacian are incorporated as basis functions to employ the geometrical structures of patches. Meanwhile, the residual error constraint is considered to deal with the noise corruption in the iterative procedure. Sequently, an eigenvector-based EPLL problem is presented under a set of residual error constraints, and the corresponding approximate solution is efficiently provided. Experiments show that the proposed algorithm can achieve a better performance than the traditional EPLL, and is comparable with some other state-of-art denoising methods.","PeriodicalId":206199,"journal":{"name":"2016 IEEE International Conference on Digital Signal Processing (DSP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Image denoising with expected patch log likelihood using eigenvectors of graph Laplacian\",\"authors\":\"Yibin Tang, Ying Chen, N. Xu, A. Jiang, Yuan Gao\",\"doi\":\"10.1109/ICDSP.2016.7868596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, an Expected Patch Log Likelihood (EPLL) method is presented for image denoising, which can well restore details of natural images. However, the EPLL is viewed as a local method, and seldom takes into account the relationship among patches. In this paper, a non-local EPLL algorithm using eigenvectors of the graph Laplacian of patches is proposed to fully exploit such relationship. In detail, the eigenvectors of the graph Laplacian are incorporated as basis functions to employ the geometrical structures of patches. Meanwhile, the residual error constraint is considered to deal with the noise corruption in the iterative procedure. Sequently, an eigenvector-based EPLL problem is presented under a set of residual error constraints, and the corresponding approximate solution is efficiently provided. Experiments show that the proposed algorithm can achieve a better performance than the traditional EPLL, and is comparable with some other state-of-art denoising methods.\",\"PeriodicalId\":206199,\"journal\":{\"name\":\"2016 IEEE International Conference on Digital Signal Processing (DSP)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2016.7868596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2016.7868596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,提出了一种基于期望Patch Log Likelihood (EPLL)的图像去噪方法,能够很好地还原自然图像的细节。然而,EPLL被视为一种局部方法,很少考虑斑块之间的关系。为了充分利用这种关系,本文提出了一种利用斑块图拉普拉斯特征向量的非局部EPLL算法。具体地说,将图拉普拉斯特征向量作为基函数来利用斑块的几何结构。同时,考虑残差约束来处理迭代过程中的噪声破坏。在此基础上,提出了残差约束下基于特征向量的EPLL问题,并给出了相应的近似解。实验表明,该算法比传统的EPLL去噪方法具有更好的性能,并且与其他一些先进的去噪方法具有可比性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image denoising with expected patch log likelihood using eigenvectors of graph Laplacian
Recently, an Expected Patch Log Likelihood (EPLL) method is presented for image denoising, which can well restore details of natural images. However, the EPLL is viewed as a local method, and seldom takes into account the relationship among patches. In this paper, a non-local EPLL algorithm using eigenvectors of the graph Laplacian of patches is proposed to fully exploit such relationship. In detail, the eigenvectors of the graph Laplacian are incorporated as basis functions to employ the geometrical structures of patches. Meanwhile, the residual error constraint is considered to deal with the noise corruption in the iterative procedure. Sequently, an eigenvector-based EPLL problem is presented under a set of residual error constraints, and the corresponding approximate solution is efficiently provided. Experiments show that the proposed algorithm can achieve a better performance than the traditional EPLL, and is comparable with some other state-of-art denoising methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信