{"title":"激波后正丁醇与氧反应的原子吸收光谱法实验研究","authors":"N. Bystrov, A. Emelianov, A. Eremin, P. Yatsenko","doi":"10.33257/PHCHGD.20.1.799","DOIUrl":null,"url":null,"abstract":"This paper presents new data on the time profiles of the concentration of atomic oxygen obtained during high-temperature oxidation of n-butanol behind reflected shock waves in the temperature range of 1600–2600 K at pressures of 2–3 bar. The kinetics of the reaction of nC4H9OH with atomic oxygen has been studied. As a source of oxygen atoms, a small amount of nitrous oxide N2O was added to the mixture. Quantitative measurements of the concentration profiles of oxygen atoms were carried out using atomic resonance absorption spectroscopy (ARAS) on the resonance line of the O atom (λ = 130.5 nm). Kinetic analysis of the obtained data was carried out using the Chemkin package. The experimental results obtained are compared with actual kinetic combustion schemes of n-butanol. It is shown that the kinetic schemes of n-butanol combustion available in the literature in some cases do not exactly agree with the experimental results. An analysis of possible additions to the existing kinetic schemes was carried out. As a result, it was suggested possible improvement to the existing kinetic schemes for the combustion of n-butanol at high temperatures.","PeriodicalId":309290,"journal":{"name":"Physical-Chemical Kinetics in Gas Dynamics","volume":"273 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Experimental study of reaction of n-butanol with oxygen behind shock waves using ARAS method\",\"authors\":\"N. Bystrov, A. Emelianov, A. Eremin, P. Yatsenko\",\"doi\":\"10.33257/PHCHGD.20.1.799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents new data on the time profiles of the concentration of atomic oxygen obtained during high-temperature oxidation of n-butanol behind reflected shock waves in the temperature range of 1600–2600 K at pressures of 2–3 bar. The kinetics of the reaction of nC4H9OH with atomic oxygen has been studied. As a source of oxygen atoms, a small amount of nitrous oxide N2O was added to the mixture. Quantitative measurements of the concentration profiles of oxygen atoms were carried out using atomic resonance absorption spectroscopy (ARAS) on the resonance line of the O atom (λ = 130.5 nm). Kinetic analysis of the obtained data was carried out using the Chemkin package. The experimental results obtained are compared with actual kinetic combustion schemes of n-butanol. It is shown that the kinetic schemes of n-butanol combustion available in the literature in some cases do not exactly agree with the experimental results. An analysis of possible additions to the existing kinetic schemes was carried out. As a result, it was suggested possible improvement to the existing kinetic schemes for the combustion of n-butanol at high temperatures.\",\"PeriodicalId\":309290,\"journal\":{\"name\":\"Physical-Chemical Kinetics in Gas Dynamics\",\"volume\":\"273 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical-Chemical Kinetics in Gas Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33257/PHCHGD.20.1.799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical-Chemical Kinetics in Gas Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33257/PHCHGD.20.1.799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental study of reaction of n-butanol with oxygen behind shock waves using ARAS method
This paper presents new data on the time profiles of the concentration of atomic oxygen obtained during high-temperature oxidation of n-butanol behind reflected shock waves in the temperature range of 1600–2600 K at pressures of 2–3 bar. The kinetics of the reaction of nC4H9OH with atomic oxygen has been studied. As a source of oxygen atoms, a small amount of nitrous oxide N2O was added to the mixture. Quantitative measurements of the concentration profiles of oxygen atoms were carried out using atomic resonance absorption spectroscopy (ARAS) on the resonance line of the O atom (λ = 130.5 nm). Kinetic analysis of the obtained data was carried out using the Chemkin package. The experimental results obtained are compared with actual kinetic combustion schemes of n-butanol. It is shown that the kinetic schemes of n-butanol combustion available in the literature in some cases do not exactly agree with the experimental results. An analysis of possible additions to the existing kinetic schemes was carried out. As a result, it was suggested possible improvement to the existing kinetic schemes for the combustion of n-butanol at high temperatures.