符号感染性休克患者数据分析的交叉点概化规则

J. Paetz
{"title":"符号感染性休克患者数据分析的交叉点概化规则","authors":"J. Paetz","doi":"10.1109/ICDM.2002.1184026","DOIUrl":null,"url":null,"abstract":"In intensive care units much data is irregularly recorded. Here, we consider the analysis of symbolic septic shock patient data. We show that it could be worth considering the generalization paradigm (individual cases generalized to more general rules) instead of the association paradigm (combining single attributes) when considering very individual cases (e.g. patients) and when expecting longer rules than shorter ones. We present an algorithm for rule generation and classification based on heuristically generated set-based intersections. We demonstrate the usefulness of our algorithm by analysing our septic shock patient data.","PeriodicalId":405340,"journal":{"name":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Intersection based generalization rules for the analysis of symbolic septic shock patient data\",\"authors\":\"J. Paetz\",\"doi\":\"10.1109/ICDM.2002.1184026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In intensive care units much data is irregularly recorded. Here, we consider the analysis of symbolic septic shock patient data. We show that it could be worth considering the generalization paradigm (individual cases generalized to more general rules) instead of the association paradigm (combining single attributes) when considering very individual cases (e.g. patients) and when expecting longer rules than shorter ones. We present an algorithm for rule generation and classification based on heuristically generated set-based intersections. We demonstrate the usefulness of our algorithm by analysing our septic shock patient data.\",\"PeriodicalId\":405340,\"journal\":{\"name\":\"2002 IEEE International Conference on Data Mining, 2002. Proceedings.\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 IEEE International Conference on Data Mining, 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2002.1184026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2002.1184026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在重症监护病房,很多数据都是不定期记录的。在这里,我们考虑分析象征性感染性休克患者的数据。我们表明,在考虑非常个别的情况(例如患者)以及期望更长的规则而不是更短的规则时,考虑泛化范式(单个案例推广到更一般的规则)而不是关联范式(结合单个属性)可能是值得的。提出了一种基于启发式生成的基于集合的交集的规则生成和分类算法。我们通过分析脓毒性休克患者的数据来证明我们的算法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intersection based generalization rules for the analysis of symbolic septic shock patient data
In intensive care units much data is irregularly recorded. Here, we consider the analysis of symbolic septic shock patient data. We show that it could be worth considering the generalization paradigm (individual cases generalized to more general rules) instead of the association paradigm (combining single attributes) when considering very individual cases (e.g. patients) and when expecting longer rules than shorter ones. We present an algorithm for rule generation and classification based on heuristically generated set-based intersections. We demonstrate the usefulness of our algorithm by analysing our septic shock patient data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信