一个使用人工智能和上下文感知技术自动检测在线作弊活动的智能系统

Qinyuhan Zhao, Mingze Gao, Yu Sun
{"title":"一个使用人工智能和上下文感知技术自动检测在线作弊活动的智能系统","authors":"Qinyuhan Zhao, Mingze Gao, Yu Sun","doi":"10.5121/csit.2022.121707","DOIUrl":null,"url":null,"abstract":"In the environment of online courses and online exams, cheating in online courses is prevalent [1]. To better ensure fairness in exams, schools and educational institutions need to use technology to detect and deter cheating [2]. Starting from practical application, this paper discusses 3 different methods to detect cheating behavior, and proposes a new way. for online exam supervision.","PeriodicalId":170432,"journal":{"name":"Signal & Image Processing Trends","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Intelligent System to Automate the Detection of Online Cheating Activities using AI and Context Aware Techniques\",\"authors\":\"Qinyuhan Zhao, Mingze Gao, Yu Sun\",\"doi\":\"10.5121/csit.2022.121707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the environment of online courses and online exams, cheating in online courses is prevalent [1]. To better ensure fairness in exams, schools and educational institutions need to use technology to detect and deter cheating [2]. Starting from practical application, this paper discusses 3 different methods to detect cheating behavior, and proposes a new way. for online exam supervision.\",\"PeriodicalId\":170432,\"journal\":{\"name\":\"Signal & Image Processing Trends\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal & Image Processing Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2022.121707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal & Image Processing Trends","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.121707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在网络课程和网络考试的环境下,网络课程作弊现象十分普遍[1]。为了更好地确保考试的公平性,学校和教育机构需要使用技术来检测和阻止作弊行为[2]。本文从实际应用出发,讨论了三种不同的检测作弊行为的方法,并提出了一种新的方法。用于在线考试监督。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Intelligent System to Automate the Detection of Online Cheating Activities using AI and Context Aware Techniques
In the environment of online courses and online exams, cheating in online courses is prevalent [1]. To better ensure fairness in exams, schools and educational institutions need to use technology to detect and deter cheating [2]. Starting from practical application, this paper discusses 3 different methods to detect cheating behavior, and proposes a new way. for online exam supervision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信