纳米遗传学习分析:在一个在线分数游戏中照亮学生的学习路径

Taylor Martin, Ani Aghababyan, Jay Pfaffman, J. Olsen, Stephanie Baker Peacock, Philip Janisiewicz, R. Phillips, C. Smith
{"title":"纳米遗传学习分析:在一个在线分数游戏中照亮学生的学习路径","authors":"Taylor Martin, Ani Aghababyan, Jay Pfaffman, J. Olsen, Stephanie Baker Peacock, Philip Janisiewicz, R. Phillips, C. Smith","doi":"10.1145/2460296.2460328","DOIUrl":null,"url":null,"abstract":"A working understanding of fractions is critical to student success in high school and college math. Therefore, an understanding of the learning pathways that lead students to this working understanding is important for educators to provide optimal learning environments for their students. We propose the use of microgenetic analysis techniques including data mining and visualizations to inform our understanding of the process by which students learn fractions in an online game environment. These techniques help identify important variables and classification algorithms to group students by their learning trajectories.","PeriodicalId":162301,"journal":{"name":"International Conference on Learning Analytics and Knowledge","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Nanogenetic learning analytics: illuminating student learning pathways in an online fraction game\",\"authors\":\"Taylor Martin, Ani Aghababyan, Jay Pfaffman, J. Olsen, Stephanie Baker Peacock, Philip Janisiewicz, R. Phillips, C. Smith\",\"doi\":\"10.1145/2460296.2460328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A working understanding of fractions is critical to student success in high school and college math. Therefore, an understanding of the learning pathways that lead students to this working understanding is important for educators to provide optimal learning environments for their students. We propose the use of microgenetic analysis techniques including data mining and visualizations to inform our understanding of the process by which students learn fractions in an online game environment. These techniques help identify important variables and classification algorithms to group students by their learning trajectories.\",\"PeriodicalId\":162301,\"journal\":{\"name\":\"International Conference on Learning Analytics and Knowledge\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Learning Analytics and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2460296.2460328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Learning Analytics and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2460296.2460328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

对分数的有效理解对于学生在高中和大学数学中取得成功至关重要。因此,了解引导学生获得这种工作理解的学习途径对于教育工作者为学生提供最佳学习环境非常重要。我们建议使用包括数据挖掘和可视化在内的微遗传分析技术来了解学生在在线游戏环境中学习分数的过程。这些技术有助于识别重要的变量和分类算法,根据他们的学习轨迹对学生进行分组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanogenetic learning analytics: illuminating student learning pathways in an online fraction game
A working understanding of fractions is critical to student success in high school and college math. Therefore, an understanding of the learning pathways that lead students to this working understanding is important for educators to provide optimal learning environments for their students. We propose the use of microgenetic analysis techniques including data mining and visualizations to inform our understanding of the process by which students learn fractions in an online game environment. These techniques help identify important variables and classification algorithms to group students by their learning trajectories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信