多项式时间的Ramanujan图

Michael B. Cohen
{"title":"多项式时间的Ramanujan图","authors":"Michael B. Cohen","doi":"10.1109/FOCS.2016.37","DOIUrl":null,"url":null,"abstract":"Recent work by Marcus, Spielman and Srivastava proves the existence of bipartite Ramanujan (multi) graphs of all degrees and all sizes. However, that paper did not provide a polynomial time algorithm to actually compute such graphs. Here, we provide a polynomial time algorithm to compute certain expected characteristic polynomials related to this construction. This leads to a deterministic polynomial time algorithm to compute bipartite Ramanujan (multi) graphs of all degrees and all sizes.","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"243 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Ramanujan Graphs in Polynomial Time\",\"authors\":\"Michael B. Cohen\",\"doi\":\"10.1109/FOCS.2016.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent work by Marcus, Spielman and Srivastava proves the existence of bipartite Ramanujan (multi) graphs of all degrees and all sizes. However, that paper did not provide a polynomial time algorithm to actually compute such graphs. Here, we provide a polynomial time algorithm to compute certain expected characteristic polynomials related to this construction. This leads to a deterministic polynomial time algorithm to compute bipartite Ramanujan (multi) graphs of all degrees and all sizes.\",\"PeriodicalId\":414001,\"journal\":{\"name\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"243 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2016.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

Marcus, Spielman和Srivastava最近的工作证明了所有度和所有大小的二部Ramanujan(多)图的存在性。然而,那篇论文并没有提供一个多项式时间算法来实际计算这种图。在这里,我们提供了一个多项式时间算法来计算与此结构相关的某些期望特征多项式。这导致了一个确定性多项式时间算法来计算所有度和所有大小的二部拉马努金(多)图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ramanujan Graphs in Polynomial Time
Recent work by Marcus, Spielman and Srivastava proves the existence of bipartite Ramanujan (multi) graphs of all degrees and all sizes. However, that paper did not provide a polynomial time algorithm to actually compute such graphs. Here, we provide a polynomial time algorithm to compute certain expected characteristic polynomials related to this construction. This leads to a deterministic polynomial time algorithm to compute bipartite Ramanujan (multi) graphs of all degrees and all sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信