基于一对全正则化逻辑回归的WiFi室内定位分类

Zifan Peng, Yuchen Xie, Donglin Wang, Z. Dong
{"title":"基于一对全正则化逻辑回归的WiFi室内定位分类","authors":"Zifan Peng, Yuchen Xie, Donglin Wang, Z. Dong","doi":"10.1109/SARNOF.2016.7846746","DOIUrl":null,"url":null,"abstract":"Wi-Fi based indoor localization is gaining popularity because of the wide adoption of WiFi technologies in existing infrastructure. In order to increase the accuracy of Wi-Fi localization, we develop a novel localization method using One-to-all Regularized Logistic Regression-based Classification (ORLRC). This method is based on logistic regression. The proposed ORLRC is compared with the k-means clustering approach and achieves a location estimation accuracy of 95.8% comparing to an accuracy of 80% by the k-means clustering approach.","PeriodicalId":137948,"journal":{"name":"2016 IEEE 37th Sarnoff Symposium","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"One-to-all regularized logistic regression-based classification for WiFi indoor localization\",\"authors\":\"Zifan Peng, Yuchen Xie, Donglin Wang, Z. Dong\",\"doi\":\"10.1109/SARNOF.2016.7846746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wi-Fi based indoor localization is gaining popularity because of the wide adoption of WiFi technologies in existing infrastructure. In order to increase the accuracy of Wi-Fi localization, we develop a novel localization method using One-to-all Regularized Logistic Regression-based Classification (ORLRC). This method is based on logistic regression. The proposed ORLRC is compared with the k-means clustering approach and achieves a location estimation accuracy of 95.8% comparing to an accuracy of 80% by the k-means clustering approach.\",\"PeriodicalId\":137948,\"journal\":{\"name\":\"2016 IEEE 37th Sarnoff Symposium\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 37th Sarnoff Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SARNOF.2016.7846746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 37th Sarnoff Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SARNOF.2016.7846746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

由于WiFi技术在现有基础设施中的广泛采用,基于Wi-Fi的室内定位越来越受欢迎。为了提高Wi-Fi定位的准确性,我们提出了一种基于一对所有正则化逻辑回归分类(ORLRC)的定位方法。该方法基于逻辑回归。将该方法与k-means聚类方法进行了比较,得到了95.8%的位置估计精度,而k-means聚类方法的准确率为80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-to-all regularized logistic regression-based classification for WiFi indoor localization
Wi-Fi based indoor localization is gaining popularity because of the wide adoption of WiFi technologies in existing infrastructure. In order to increase the accuracy of Wi-Fi localization, we develop a novel localization method using One-to-all Regularized Logistic Regression-based Classification (ORLRC). This method is based on logistic regression. The proposed ORLRC is compared with the k-means clustering approach and achieves a location estimation accuracy of 95.8% comparing to an accuracy of 80% by the k-means clustering approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信