超分辨ISAR成像的统计松弛法

Long Zhang, X. He
{"title":"超分辨ISAR成像的统计松弛法","authors":"Long Zhang, X. He","doi":"10.1109/ICSPS.2010.5555617","DOIUrl":null,"url":null,"abstract":"An effective statistical method of detecting the scatterers center for super-resolution ISAR imaging is presented. By exploiting the statistics of background noise and clutters, Gaussianity test(GT) is applied to extract the scatterers center in range cells under desired constant false alarm rate(CFAR). Combined with extended Relax algorithm, super resolution ISAR image of target is generated. Theoretical analysis and experimental results of real data show that proposed method exhibit better performance with expected to conventional high resolution method.","PeriodicalId":234084,"journal":{"name":"2010 2nd International Conference on Signal Processing Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stistical relax method for super resolution ISAR imaging\",\"authors\":\"Long Zhang, X. He\",\"doi\":\"10.1109/ICSPS.2010.5555617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An effective statistical method of detecting the scatterers center for super-resolution ISAR imaging is presented. By exploiting the statistics of background noise and clutters, Gaussianity test(GT) is applied to extract the scatterers center in range cells under desired constant false alarm rate(CFAR). Combined with extended Relax algorithm, super resolution ISAR image of target is generated. Theoretical analysis and experimental results of real data show that proposed method exhibit better performance with expected to conventional high resolution method.\",\"PeriodicalId\":234084,\"journal\":{\"name\":\"2010 2nd International Conference on Signal Processing Systems\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Conference on Signal Processing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPS.2010.5555617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPS.2010.5555617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种有效的超分辨ISAR成像散射体中心统计检测方法。利用背景噪声和杂波的统计特性,在期望的恒定虚警率(CFAR)下,应用高斯检验(GT)提取距离单元中的散射体中心。结合扩展Relax算法,生成目标的超分辨率ISAR图像。理论分析和实际数据的实验结果表明,该方法比传统的高分辨率方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stistical relax method for super resolution ISAR imaging
An effective statistical method of detecting the scatterers center for super-resolution ISAR imaging is presented. By exploiting the statistics of background noise and clutters, Gaussianity test(GT) is applied to extract the scatterers center in range cells under desired constant false alarm rate(CFAR). Combined with extended Relax algorithm, super resolution ISAR image of target is generated. Theoretical analysis and experimental results of real data show that proposed method exhibit better performance with expected to conventional high resolution method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信