{"title":"一种用于z源逆变器的新型空间矢量PWM","authors":"U. Ali, V. Kamaraj","doi":"10.1109/ICEES.2011.5725307","DOIUrl":null,"url":null,"abstract":"This paper presents a novel space vector pulse width modulation (SVPWM) technique for three phase Z-source inverter. The proposed modified SVPWM has an additional shoot-through state for boosting the dc link voltage of the inverter beside active and zero states. The shoot-through states are evenly assigned to each phase within zero state. So zero voltage period is diminished for generating a shoot-through time, and active states are unchanged. Simulation and experimental results are presented to demonstrate the new features.","PeriodicalId":156837,"journal":{"name":"2011 1st International Conference on Electrical Energy Systems","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"A novel space vector PWM for Z-source inverter\",\"authors\":\"U. Ali, V. Kamaraj\",\"doi\":\"10.1109/ICEES.2011.5725307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel space vector pulse width modulation (SVPWM) technique for three phase Z-source inverter. The proposed modified SVPWM has an additional shoot-through state for boosting the dc link voltage of the inverter beside active and zero states. The shoot-through states are evenly assigned to each phase within zero state. So zero voltage period is diminished for generating a shoot-through time, and active states are unchanged. Simulation and experimental results are presented to demonstrate the new features.\",\"PeriodicalId\":156837,\"journal\":{\"name\":\"2011 1st International Conference on Electrical Energy Systems\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 1st International Conference on Electrical Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEES.2011.5725307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 1st International Conference on Electrical Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEES.2011.5725307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents a novel space vector pulse width modulation (SVPWM) technique for three phase Z-source inverter. The proposed modified SVPWM has an additional shoot-through state for boosting the dc link voltage of the inverter beside active and zero states. The shoot-through states are evenly assigned to each phase within zero state. So zero voltage period is diminished for generating a shoot-through time, and active states are unchanged. Simulation and experimental results are presented to demonstrate the new features.