{"title":"二元空间分割可见树的多边形光渲染","authors":"Hiroki Okuno, Kei Iwasaki","doi":"10.1145/3355088.3365153","DOIUrl":null,"url":null,"abstract":"In this paper, we present a method to render shadows for physically-based materials under polygonal light sources. Direct illumination calculation from a polygonal light source involves the triple product integral of the lighting, the bidirectional reflectance distribution function (BRDF), and the visibility function over the polygonal domain, which is computation intensive. To achieve real-time performance, work on polygonal light shading exploits analytic solutions of boundary integrals along the edges of the polygonal light at the cost of lacking shadowing effects. We introduce a hierarchical representation for the pre-computed visibility function to retain the merits of closed-form solutions for boundary integrals. Our method subdivides the polygonal light into a set of polygons visible from a point to be shaded. Experimental results show that our method can render complex shadows with a GGX microfacet BRDF from polygonal light sources at interactive frame rates.","PeriodicalId":435930,"journal":{"name":"SIGGRAPH Asia 2019 Technical Briefs","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Binary Space Partitioning Visibility Tree for Polygonal Light Rendering\",\"authors\":\"Hiroki Okuno, Kei Iwasaki\",\"doi\":\"10.1145/3355088.3365153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a method to render shadows for physically-based materials under polygonal light sources. Direct illumination calculation from a polygonal light source involves the triple product integral of the lighting, the bidirectional reflectance distribution function (BRDF), and the visibility function over the polygonal domain, which is computation intensive. To achieve real-time performance, work on polygonal light shading exploits analytic solutions of boundary integrals along the edges of the polygonal light at the cost of lacking shadowing effects. We introduce a hierarchical representation for the pre-computed visibility function to retain the merits of closed-form solutions for boundary integrals. Our method subdivides the polygonal light into a set of polygons visible from a point to be shaded. Experimental results show that our method can render complex shadows with a GGX microfacet BRDF from polygonal light sources at interactive frame rates.\",\"PeriodicalId\":435930,\"journal\":{\"name\":\"SIGGRAPH Asia 2019 Technical Briefs\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2019 Technical Briefs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3355088.3365153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2019 Technical Briefs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3355088.3365153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Binary Space Partitioning Visibility Tree for Polygonal Light Rendering
In this paper, we present a method to render shadows for physically-based materials under polygonal light sources. Direct illumination calculation from a polygonal light source involves the triple product integral of the lighting, the bidirectional reflectance distribution function (BRDF), and the visibility function over the polygonal domain, which is computation intensive. To achieve real-time performance, work on polygonal light shading exploits analytic solutions of boundary integrals along the edges of the polygonal light at the cost of lacking shadowing effects. We introduce a hierarchical representation for the pre-computed visibility function to retain the merits of closed-form solutions for boundary integrals. Our method subdivides the polygonal light into a set of polygons visible from a point to be shaded. Experimental results show that our method can render complex shadows with a GGX microfacet BRDF from polygonal light sources at interactive frame rates.