在线资源分配机制设计:一种统一的方法

Xiaoqi Tan, Bo Sun, A. Leon-Garcia, Yuan Wu, D. Tsang
{"title":"在线资源分配机制设计:一种统一的方法","authors":"Xiaoqi Tan, Bo Sun, A. Leon-Garcia, Yuan Wu, D. Tsang","doi":"10.1145/3393691.3394201","DOIUrl":null,"url":null,"abstract":"This paper concerns the mechanism design for online resource allocation in a strategic setting. In this setting, a single supplier allocates capacity-limited resources to requests that arrive in a sequential and arbitrary manner. Each request is associated with an agent who may act selfishly to misreport the requirement and valuation of her request. The supplier charges payment from agents whose requests are satisfied, but incurs a load-dependent supply cost. The goal is to design an incentive compatible online mechanism, which determines not only the resource allocation of each request, but also the payment of each agent, so as to (approximately) maximize the social welfare (i.e., aggregate valuations minus supply cost). We study this problem under the framework of competitive analysis. The major contribution of this paper is the development of a unified approach that achieves the best-possible competitive ratios for setups with different supply costs. Specifically, we show that when there is no supply cost or the supply cost function is linear, our model is essentially a standard 0-1 knapsack problem, for which our approach achieves logarithmic competitive ratios that match the state-of-the-art (which is optimal). For the more challenging setup when the supply cost is strictly-convex, we provide online mechanisms, for the first time, that lead to the optimal competitive ratios as well. To the best of our knowledge, this is the first approach that unifies the characterization of optimal competitive ratios in online resource allocation for different setups including zero, linear and strictly-convex supply costs.","PeriodicalId":188517,"journal":{"name":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Mechanism Design for Online Resource Allocation: A Unified Approach\",\"authors\":\"Xiaoqi Tan, Bo Sun, A. Leon-Garcia, Yuan Wu, D. Tsang\",\"doi\":\"10.1145/3393691.3394201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns the mechanism design for online resource allocation in a strategic setting. In this setting, a single supplier allocates capacity-limited resources to requests that arrive in a sequential and arbitrary manner. Each request is associated with an agent who may act selfishly to misreport the requirement and valuation of her request. The supplier charges payment from agents whose requests are satisfied, but incurs a load-dependent supply cost. The goal is to design an incentive compatible online mechanism, which determines not only the resource allocation of each request, but also the payment of each agent, so as to (approximately) maximize the social welfare (i.e., aggregate valuations minus supply cost). We study this problem under the framework of competitive analysis. The major contribution of this paper is the development of a unified approach that achieves the best-possible competitive ratios for setups with different supply costs. Specifically, we show that when there is no supply cost or the supply cost function is linear, our model is essentially a standard 0-1 knapsack problem, for which our approach achieves logarithmic competitive ratios that match the state-of-the-art (which is optimal). For the more challenging setup when the supply cost is strictly-convex, we provide online mechanisms, for the first time, that lead to the optimal competitive ratios as well. To the best of our knowledge, this is the first approach that unifies the characterization of optimal competitive ratios in online resource allocation for different setups including zero, linear and strictly-convex supply costs.\",\"PeriodicalId\":188517,\"journal\":{\"name\":\"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3393691.3394201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3393691.3394201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文研究了战略环境下网络资源配置的机制设计。在此设置中,单个供应商将容量有限的资源分配给以顺序和任意方式到达的请求。每个请求都与一个代理相关联,代理可能会自私地错误报告其请求的需求和评估。供应商向满足其请求的代理收取费用,但会产生与负荷相关的供应成本。目标是设计一个激励兼容的在线机制,该机制不仅决定每个请求的资源分配,而且决定每个代理的支付,以(近似)最大化社会福利(即总估值减去供应成本)。我们在竞争分析的框架下研究这个问题。本文的主要贡献是开发了一种统一的方法,可以为具有不同供应成本的装置实现最佳竞争比率。具体来说,我们表明,当没有供应成本或供应成本函数是线性的时候,我们的模型本质上是一个标准的0-1背包问题,对于这个问题,我们的方法实现了与最先进(最优)相匹配的对数竞争比。对于更具挑战性的设置,当供应成本是严格凸时,我们首次提供在线机制,导致最佳竞争比率。据我们所知,这是第一个统一在线资源分配中不同设置(包括零、线性和严格凸供应成本)的最优竞争比特征的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanism Design for Online Resource Allocation: A Unified Approach
This paper concerns the mechanism design for online resource allocation in a strategic setting. In this setting, a single supplier allocates capacity-limited resources to requests that arrive in a sequential and arbitrary manner. Each request is associated with an agent who may act selfishly to misreport the requirement and valuation of her request. The supplier charges payment from agents whose requests are satisfied, but incurs a load-dependent supply cost. The goal is to design an incentive compatible online mechanism, which determines not only the resource allocation of each request, but also the payment of each agent, so as to (approximately) maximize the social welfare (i.e., aggregate valuations minus supply cost). We study this problem under the framework of competitive analysis. The major contribution of this paper is the development of a unified approach that achieves the best-possible competitive ratios for setups with different supply costs. Specifically, we show that when there is no supply cost or the supply cost function is linear, our model is essentially a standard 0-1 knapsack problem, for which our approach achieves logarithmic competitive ratios that match the state-of-the-art (which is optimal). For the more challenging setup when the supply cost is strictly-convex, we provide online mechanisms, for the first time, that lead to the optimal competitive ratios as well. To the best of our knowledge, this is the first approach that unifies the characterization of optimal competitive ratios in online resource allocation for different setups including zero, linear and strictly-convex supply costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信