{"title":"用天真Bayes的分类方法对Facebook社交媒体上的负面评论进行情绪分析","authors":"Zaenal Zaenal, Yulita Salim, Lutfi Budi Ilmawan","doi":"10.33096/busiti.v1i4.666","DOIUrl":null,"url":null,"abstract":"Facebook merupakan sosial media di Indonesia dengan jumlah akun aktif tertinggi dan paling sering dikunjungi, Media sosial menjadi sarana yang sangat mudah dan bebas untuk beropini, juga memiliki banyak manfaat seperti menuangkan pemikiran dengan membuat status yang didapat dibaca oleh seluruh pengguna media sosial maupun berkomentar mengenai isu-isu terkini, namun dibalik itu semua muncul masalah baru yaitu komentar negatif, salah satunya adalah cyberbullying yang memiliki dampak mendalam dan tahan lama pada korban. Beberapa penelitian melaporkan bahwa korban cyberbullying cenderung mengalami masalah kesehatan mental yang lebih luas, penyalahgunaan narkoba dan ide bunuh diri. Tujuan penelitian ini adalah mengolah data komentar yang diambil dari media sosial Facebook menggunakan pre-processing data untuk menghilangkan kata atau karakter yang tidak dibutuhkan, membangun aplikasi prototype filter komentar untuk menyaring komentar negatif cyberbullying, dan menguji metode klasifikasi Nave Bayes. Data komentar yang digunakan yaitu 300 data training, dan 100 data testing. Setelah melakukan penelitian, didapatkan bahwa dengan menggunakan pre-processing data mampu menghilangkan karakter atau kata yang tidak dibutuhkan dari komentar, Aplikasi prototype filter komentar yang dibangun telah mampu menyaring komentar cyberbullying, dan hasil pengujian metode klasifikasi Nave Bayes menggunakan metode confusion matrix dengan jumlah 100 komentar data testing didapatkan akurasi sebesar 86%, presisi sebesar 84,6153841538461%, recall sebesar 88%, dan f1-score sebesar 86,27450980392156%.","PeriodicalId":447053,"journal":{"name":"Buletin Sistem Informasi dan Teknologi Islam","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisis Sentimen terhadap Komentar Negatif di Media Sosial Facebook dengan Metode Klasifikasi Naïve Bayes\",\"authors\":\"Zaenal Zaenal, Yulita Salim, Lutfi Budi Ilmawan\",\"doi\":\"10.33096/busiti.v1i4.666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facebook merupakan sosial media di Indonesia dengan jumlah akun aktif tertinggi dan paling sering dikunjungi, Media sosial menjadi sarana yang sangat mudah dan bebas untuk beropini, juga memiliki banyak manfaat seperti menuangkan pemikiran dengan membuat status yang didapat dibaca oleh seluruh pengguna media sosial maupun berkomentar mengenai isu-isu terkini, namun dibalik itu semua muncul masalah baru yaitu komentar negatif, salah satunya adalah cyberbullying yang memiliki dampak mendalam dan tahan lama pada korban. Beberapa penelitian melaporkan bahwa korban cyberbullying cenderung mengalami masalah kesehatan mental yang lebih luas, penyalahgunaan narkoba dan ide bunuh diri. Tujuan penelitian ini adalah mengolah data komentar yang diambil dari media sosial Facebook menggunakan pre-processing data untuk menghilangkan kata atau karakter yang tidak dibutuhkan, membangun aplikasi prototype filter komentar untuk menyaring komentar negatif cyberbullying, dan menguji metode klasifikasi Nave Bayes. Data komentar yang digunakan yaitu 300 data training, dan 100 data testing. Setelah melakukan penelitian, didapatkan bahwa dengan menggunakan pre-processing data mampu menghilangkan karakter atau kata yang tidak dibutuhkan dari komentar, Aplikasi prototype filter komentar yang dibangun telah mampu menyaring komentar cyberbullying, dan hasil pengujian metode klasifikasi Nave Bayes menggunakan metode confusion matrix dengan jumlah 100 komentar data testing didapatkan akurasi sebesar 86%, presisi sebesar 84,6153841538461%, recall sebesar 88%, dan f1-score sebesar 86,27450980392156%.\",\"PeriodicalId\":447053,\"journal\":{\"name\":\"Buletin Sistem Informasi dan Teknologi Islam\",\"volume\":\"162 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buletin Sistem Informasi dan Teknologi Islam\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33096/busiti.v1i4.666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buletin Sistem Informasi dan Teknologi Islam","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33096/busiti.v1i4.666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analisis Sentimen terhadap Komentar Negatif di Media Sosial Facebook dengan Metode Klasifikasi Naïve Bayes
Facebook merupakan sosial media di Indonesia dengan jumlah akun aktif tertinggi dan paling sering dikunjungi, Media sosial menjadi sarana yang sangat mudah dan bebas untuk beropini, juga memiliki banyak manfaat seperti menuangkan pemikiran dengan membuat status yang didapat dibaca oleh seluruh pengguna media sosial maupun berkomentar mengenai isu-isu terkini, namun dibalik itu semua muncul masalah baru yaitu komentar negatif, salah satunya adalah cyberbullying yang memiliki dampak mendalam dan tahan lama pada korban. Beberapa penelitian melaporkan bahwa korban cyberbullying cenderung mengalami masalah kesehatan mental yang lebih luas, penyalahgunaan narkoba dan ide bunuh diri. Tujuan penelitian ini adalah mengolah data komentar yang diambil dari media sosial Facebook menggunakan pre-processing data untuk menghilangkan kata atau karakter yang tidak dibutuhkan, membangun aplikasi prototype filter komentar untuk menyaring komentar negatif cyberbullying, dan menguji metode klasifikasi Nave Bayes. Data komentar yang digunakan yaitu 300 data training, dan 100 data testing. Setelah melakukan penelitian, didapatkan bahwa dengan menggunakan pre-processing data mampu menghilangkan karakter atau kata yang tidak dibutuhkan dari komentar, Aplikasi prototype filter komentar yang dibangun telah mampu menyaring komentar cyberbullying, dan hasil pengujian metode klasifikasi Nave Bayes menggunakan metode confusion matrix dengan jumlah 100 komentar data testing didapatkan akurasi sebesar 86%, presisi sebesar 84,6153841538461%, recall sebesar 88%, dan f1-score sebesar 86,27450980392156%.