{"title":"神经网络在油气管道安全评价中的应用综述","authors":"M. Layouni, S. Tahar, M. Hamdi","doi":"10.1109/CIES.2014.7011837","DOIUrl":null,"url":null,"abstract":"Pipeline systems are an essential component of the oil and gas supply chain today. Although considered among the safest transportation methods, pipelines are still prone to failure due to corrosion and other types of defects. Such failures can lead to serious accidents resulting in big losses to life and the environment. It is therefore crucial for pipeline operators to reliably detect pipeline defects in an accurate and timely manner. Because of the size and complexity of pipeline systems, however, relying on human operators to perform the inspection is not possible. Automating the inspection process has been an important goal for the pipeline industry for a number of years. Significant progress has been made in that regard, and available techniques combine analytical modeling, numerical computations, and machine learning. This paper presents a survey of state-of-the-art methods used to assess the safety of the oil and gas pipelines. The paper explains the principles behind each method, highlights the setting where each method is most effective, and shows how several methods can be combined to achieve a higher level of accuracy.","PeriodicalId":287779,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)","volume":"361 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A survey on the application of Neural Networks in the safety assessment of oil and gas pipelines\",\"authors\":\"M. Layouni, S. Tahar, M. Hamdi\",\"doi\":\"10.1109/CIES.2014.7011837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pipeline systems are an essential component of the oil and gas supply chain today. Although considered among the safest transportation methods, pipelines are still prone to failure due to corrosion and other types of defects. Such failures can lead to serious accidents resulting in big losses to life and the environment. It is therefore crucial for pipeline operators to reliably detect pipeline defects in an accurate and timely manner. Because of the size and complexity of pipeline systems, however, relying on human operators to perform the inspection is not possible. Automating the inspection process has been an important goal for the pipeline industry for a number of years. Significant progress has been made in that regard, and available techniques combine analytical modeling, numerical computations, and machine learning. This paper presents a survey of state-of-the-art methods used to assess the safety of the oil and gas pipelines. The paper explains the principles behind each method, highlights the setting where each method is most effective, and shows how several methods can be combined to achieve a higher level of accuracy.\",\"PeriodicalId\":287779,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)\",\"volume\":\"361 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIES.2014.7011837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIES.2014.7011837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A survey on the application of Neural Networks in the safety assessment of oil and gas pipelines
Pipeline systems are an essential component of the oil and gas supply chain today. Although considered among the safest transportation methods, pipelines are still prone to failure due to corrosion and other types of defects. Such failures can lead to serious accidents resulting in big losses to life and the environment. It is therefore crucial for pipeline operators to reliably detect pipeline defects in an accurate and timely manner. Because of the size and complexity of pipeline systems, however, relying on human operators to perform the inspection is not possible. Automating the inspection process has been an important goal for the pipeline industry for a number of years. Significant progress has been made in that regard, and available techniques combine analytical modeling, numerical computations, and machine learning. This paper presents a survey of state-of-the-art methods used to assess the safety of the oil and gas pipelines. The paper explains the principles behind each method, highlights the setting where each method is most effective, and shows how several methods can be combined to achieve a higher level of accuracy.