无监督域自适应的全局局部对齐

S. Chhabra, Prabal Bijoy Dutta, Baoxin Li, Hemanth Venkateswara
{"title":"无监督域自适应的全局局部对齐","authors":"S. Chhabra, Prabal Bijoy Dutta, Baoxin Li, Hemanth Venkateswara","doi":"10.1145/3476098.3485051","DOIUrl":null,"url":null,"abstract":"Traditional unsupervised domain adaptation methods attempt to align source and target domains globally and are agnostic to the categories of the data points. This results in an inaccurate categorical alignment and diminishes the classification performance on the target domain. In this paper, we alter existing adversarial domain alignment methods to adhere to category alignment by imputing category information. We partition the samples based on category using source labels and target pseudo labels and then apply domain alignment for every category. Our proposed modification provides a boost in performance even with a modest pseudo label estimator. We evaluate our approach on 4 popular domain alignment loss functions using object recognition and digit datasets.","PeriodicalId":390904,"journal":{"name":"Multimedia Understanding with Less Labeling on Multimedia Understanding with Less Labeling","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Glocal Alignment for Unsupervised Domain Adaptation\",\"authors\":\"S. Chhabra, Prabal Bijoy Dutta, Baoxin Li, Hemanth Venkateswara\",\"doi\":\"10.1145/3476098.3485051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional unsupervised domain adaptation methods attempt to align source and target domains globally and are agnostic to the categories of the data points. This results in an inaccurate categorical alignment and diminishes the classification performance on the target domain. In this paper, we alter existing adversarial domain alignment methods to adhere to category alignment by imputing category information. We partition the samples based on category using source labels and target pseudo labels and then apply domain alignment for every category. Our proposed modification provides a boost in performance even with a modest pseudo label estimator. We evaluate our approach on 4 popular domain alignment loss functions using object recognition and digit datasets.\",\"PeriodicalId\":390904,\"journal\":{\"name\":\"Multimedia Understanding with Less Labeling on Multimedia Understanding with Less Labeling\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimedia Understanding with Less Labeling on Multimedia Understanding with Less Labeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3476098.3485051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Understanding with Less Labeling on Multimedia Understanding with Less Labeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476098.3485051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

传统的无监督域自适应方法试图对源域和目标域进行全局对齐,并且与数据点的类别无关。这将导致不准确的分类对齐,并降低目标域上的分类性能。在本文中,我们改变了现有的对抗性领域对齐方法,通过输入类别信息来坚持类别对齐。我们使用源标签和目标伪标签对样本进行分类,然后对每个类别进行域对齐。我们提出的修改即使使用适度的伪标签估计器也能提高性能。我们使用目标识别和数字数据集对4种流行的域对齐损失函数进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Glocal Alignment for Unsupervised Domain Adaptation
Traditional unsupervised domain adaptation methods attempt to align source and target domains globally and are agnostic to the categories of the data points. This results in an inaccurate categorical alignment and diminishes the classification performance on the target domain. In this paper, we alter existing adversarial domain alignment methods to adhere to category alignment by imputing category information. We partition the samples based on category using source labels and target pseudo labels and then apply domain alignment for every category. Our proposed modification provides a boost in performance even with a modest pseudo label estimator. We evaluate our approach on 4 popular domain alignment loss functions using object recognition and digit datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信