机器人编程通过演示多个任务在一个共同的环境

Tohid Alizadeh, Batyrkhan Saduanov
{"title":"机器人编程通过演示多个任务在一个共同的环境","authors":"Tohid Alizadeh, Batyrkhan Saduanov","doi":"10.1109/MFI.2017.8170389","DOIUrl":null,"url":null,"abstract":"Most of the available robot programming by demonstration (PbD) approaches focus on learning a single task, in a given environmental situation. In this paper, we propose to learn multiple tasks together, within a common environment, using one of the available PbD approaches. Task-parameterized Gaussian mixture model (TP-GMM) is used at the core of the proposed approach. A database of TP-GMMs will be constructed for the tasks, and it will be used to provide the reproduction when needed. The environment will be shared between different tasks, in other words, all the available objects will be considered as external task parameters (TPs), as they may modulate the task. During the learning part, the relevance of the task parameters will be extracted for each task, and the information will be stored together with the parameters of the corresponding updated TP-GMM. For reproduction, the end user will specify the task and the robot will be able to pick the relevant TP-GMM and the relevant task parameters and reproduce the movement. The proposed approach is tested both in simulation and using a robotic experiment.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"230 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robot programming by demonstration of multiple tasks within a common environment\",\"authors\":\"Tohid Alizadeh, Batyrkhan Saduanov\",\"doi\":\"10.1109/MFI.2017.8170389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the available robot programming by demonstration (PbD) approaches focus on learning a single task, in a given environmental situation. In this paper, we propose to learn multiple tasks together, within a common environment, using one of the available PbD approaches. Task-parameterized Gaussian mixture model (TP-GMM) is used at the core of the proposed approach. A database of TP-GMMs will be constructed for the tasks, and it will be used to provide the reproduction when needed. The environment will be shared between different tasks, in other words, all the available objects will be considered as external task parameters (TPs), as they may modulate the task. During the learning part, the relevance of the task parameters will be extracted for each task, and the information will be stored together with the parameters of the corresponding updated TP-GMM. For reproduction, the end user will specify the task and the robot will be able to pick the relevant TP-GMM and the relevant task parameters and reproduce the movement. The proposed approach is tested both in simulation and using a robotic experiment.\",\"PeriodicalId\":402371,\"journal\":{\"name\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"230 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2017.8170389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

大多数可用的机器人演示编程(PbD)方法侧重于在给定环境下学习单个任务。在本文中,我们建议在一个共同的环境中,使用一种可用的PbD方法一起学习多个任务。该方法的核心是任务参数化高斯混合模型(TP-GMM)。将为这些任务建立一个TP-GMMs数据库,并在需要时用于提供复制。环境将在不同的任务之间共享,换句话说,所有可用的对象将被视为外部任务参数(tp),因为它们可以调节任务。在学习部分,对每个任务提取任务参数的相关性,并将信息与相应更新后的TP-GMM的参数一起存储。对于复制,最终用户将指定任务,机器人将能够选择相关的TP-GMM和相关的任务参数并复制运动。该方法在仿真和机器人实验中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robot programming by demonstration of multiple tasks within a common environment
Most of the available robot programming by demonstration (PbD) approaches focus on learning a single task, in a given environmental situation. In this paper, we propose to learn multiple tasks together, within a common environment, using one of the available PbD approaches. Task-parameterized Gaussian mixture model (TP-GMM) is used at the core of the proposed approach. A database of TP-GMMs will be constructed for the tasks, and it will be used to provide the reproduction when needed. The environment will be shared between different tasks, in other words, all the available objects will be considered as external task parameters (TPs), as they may modulate the task. During the learning part, the relevance of the task parameters will be extracted for each task, and the information will be stored together with the parameters of the corresponding updated TP-GMM. For reproduction, the end user will specify the task and the robot will be able to pick the relevant TP-GMM and the relevant task parameters and reproduce the movement. The proposed approach is tested both in simulation and using a robotic experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信