人类活动识别的分层表示

Nuria Oliver, E. Horvitz, A. Garg
{"title":"人类活动识别的分层表示","authors":"Nuria Oliver, E. Horvitz, A. Garg","doi":"10.1109/ICMI.2002.1166960","DOIUrl":null,"url":null,"abstract":"We present the use of layered probabilistic representations using hidden Markov models for performing sensing, learning, and inference at multiple levels of temporal granularity We describe the use of representation in a system that diagnoses states of a user's activity based on real-time streams of evidence from video, acoustic, and computer interactions. We review the representation, present an implementation, and report on experiments with the layered representation in an office-awareness application.","PeriodicalId":208377,"journal":{"name":"Proceedings. Fourth IEEE International Conference on Multimodal Interfaces","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"361","resultStr":"{\"title\":\"Layered representations for human activity recognition\",\"authors\":\"Nuria Oliver, E. Horvitz, A. Garg\",\"doi\":\"10.1109/ICMI.2002.1166960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the use of layered probabilistic representations using hidden Markov models for performing sensing, learning, and inference at multiple levels of temporal granularity We describe the use of representation in a system that diagnoses states of a user's activity based on real-time streams of evidence from video, acoustic, and computer interactions. We review the representation, present an implementation, and report on experiments with the layered representation in an office-awareness application.\",\"PeriodicalId\":208377,\"journal\":{\"name\":\"Proceedings. Fourth IEEE International Conference on Multimodal Interfaces\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"361\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Fourth IEEE International Conference on Multimodal Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMI.2002.1166960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fourth IEEE International Conference on Multimodal Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMI.2002.1166960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 361

摘要

我们介绍了使用隐马尔可夫模型在多个时间粒度级别上执行感知、学习和推理的分层概率表示。我们描述了在基于来自视频、声学和计算机交互的实时证据流诊断用户活动状态的系统中使用表示。我们回顾了该表示,给出了一个实现,并报告了在办公室感知应用程序中使用分层表示的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Layered representations for human activity recognition
We present the use of layered probabilistic representations using hidden Markov models for performing sensing, learning, and inference at multiple levels of temporal granularity We describe the use of representation in a system that diagnoses states of a user's activity based on real-time streams of evidence from video, acoustic, and computer interactions. We review the representation, present an implementation, and report on experiments with the layered representation in an office-awareness application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信