{"title":"基于改进图像分割和机器学习的鲁棒混凝土裂缝识别","authors":"Qian-Cheng Zhao, Jiang Shao, Tianlong Yang","doi":"10.1117/12.2511359","DOIUrl":null,"url":null,"abstract":"This paper presents an automatical crack recognition approach. Compared with the existing methods, it has a significant increase in robustness and efficiency when faced with widely varying field conditions. Inherent characteristics of crack images are exploited using proportional segmentation, combined with robust feature extraction to improve machine learning classifier performance. Experiments show that this method perform well in crack images recognition across different concrete conditions.","PeriodicalId":115119,"journal":{"name":"International Symposium on Precision Engineering Measurement and Instrumentation","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust concrete crack recognition based on improved image segmentation and machine learning\",\"authors\":\"Qian-Cheng Zhao, Jiang Shao, Tianlong Yang\",\"doi\":\"10.1117/12.2511359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an automatical crack recognition approach. Compared with the existing methods, it has a significant increase in robustness and efficiency when faced with widely varying field conditions. Inherent characteristics of crack images are exploited using proportional segmentation, combined with robust feature extraction to improve machine learning classifier performance. Experiments show that this method perform well in crack images recognition across different concrete conditions.\",\"PeriodicalId\":115119,\"journal\":{\"name\":\"International Symposium on Precision Engineering Measurement and Instrumentation\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Precision Engineering Measurement and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2511359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Precision Engineering Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2511359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust concrete crack recognition based on improved image segmentation and machine learning
This paper presents an automatical crack recognition approach. Compared with the existing methods, it has a significant increase in robustness and efficiency when faced with widely varying field conditions. Inherent characteristics of crack images are exploited using proportional segmentation, combined with robust feature extraction to improve machine learning classifier performance. Experiments show that this method perform well in crack images recognition across different concrete conditions.