GPU加速信息检索使用布隆过滤器

Alexandru Iacob, L. Itu, L. Sasu, F. Moldoveanu, C. Suciu
{"title":"GPU加速信息检索使用布隆过滤器","authors":"Alexandru Iacob, L. Itu, L. Sasu, F. Moldoveanu, C. Suciu","doi":"10.1109/ICSTCC.2015.7321404","DOIUrl":null,"url":null,"abstract":"Information retrieval is a technique used in search engines, advertisement placement and cognitive databases. With increasing amounts of data and stringent response time requirements, improving the underlying implementation of document retrieval becomes critical. To this end, we consider a Bloom filter, a simple randomized data structure that answers membership queries with no false negative and customizable false positive probability. Mainly, we focus on the speed-up of the algorithm by using a Graphics Processing Units (GPU) based implementation. Starting from a regular CPU implementation of the Bloom filter algorithm, we employ different optimization techniques on the two basic Bloom filter operations: mapping and querying. An important speed-up is achieved for both operations: over 300x for mapping, and over 20x for querying. Furthermore, we show that the number of hash functions used during the mapping operation, the number of files, and the number of query words have a significant effect on the execution time and the speed-up.","PeriodicalId":257135,"journal":{"name":"2015 19th International Conference on System Theory, Control and Computing (ICSTCC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"GPU accelerated information retrieval using Bloom filters\",\"authors\":\"Alexandru Iacob, L. Itu, L. Sasu, F. Moldoveanu, C. Suciu\",\"doi\":\"10.1109/ICSTCC.2015.7321404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information retrieval is a technique used in search engines, advertisement placement and cognitive databases. With increasing amounts of data and stringent response time requirements, improving the underlying implementation of document retrieval becomes critical. To this end, we consider a Bloom filter, a simple randomized data structure that answers membership queries with no false negative and customizable false positive probability. Mainly, we focus on the speed-up of the algorithm by using a Graphics Processing Units (GPU) based implementation. Starting from a regular CPU implementation of the Bloom filter algorithm, we employ different optimization techniques on the two basic Bloom filter operations: mapping and querying. An important speed-up is achieved for both operations: over 300x for mapping, and over 20x for querying. Furthermore, we show that the number of hash functions used during the mapping operation, the number of files, and the number of query words have a significant effect on the execution time and the speed-up.\",\"PeriodicalId\":257135,\"journal\":{\"name\":\"2015 19th International Conference on System Theory, Control and Computing (ICSTCC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 19th International Conference on System Theory, Control and Computing (ICSTCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTCC.2015.7321404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 19th International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC.2015.7321404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

信息检索是一种用于搜索引擎、广告投放和认知数据库的技术。随着数据量的增加和严格的响应时间需求,改进文档检索的底层实现变得至关重要。为此,我们考虑一个布隆过滤器,一个简单的随机数据结构,它回答成员查询,没有假阴性和可定制的假阳性概率。我们主要通过使用基于图形处理单元(GPU)的实现来关注算法的加速。从布鲁姆过滤器算法的常规CPU实现开始,我们在两个基本的布鲁姆过滤器操作:映射和查询上采用了不同的优化技术。这两个操作都实现了重要的加速:映射超过300倍,查询超过20倍。此外,我们还展示了映射操作期间使用的哈希函数的数量、文件的数量和查询词的数量对执行时间和加速有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU accelerated information retrieval using Bloom filters
Information retrieval is a technique used in search engines, advertisement placement and cognitive databases. With increasing amounts of data and stringent response time requirements, improving the underlying implementation of document retrieval becomes critical. To this end, we consider a Bloom filter, a simple randomized data structure that answers membership queries with no false negative and customizable false positive probability. Mainly, we focus on the speed-up of the algorithm by using a Graphics Processing Units (GPU) based implementation. Starting from a regular CPU implementation of the Bloom filter algorithm, we employ different optimization techniques on the two basic Bloom filter operations: mapping and querying. An important speed-up is achieved for both operations: over 300x for mapping, and over 20x for querying. Furthermore, we show that the number of hash functions used during the mapping operation, the number of files, and the number of query words have a significant effect on the execution time and the speed-up.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信