合成信号肽的计算框架

T. Johnsten, Aishwarya Prakash, G. Daly, Ryan G. Benton, Tristan Clark
{"title":"合成信号肽的计算框架","authors":"T. Johnsten, Aishwarya Prakash, G. Daly, Ryan G. Benton, Tristan Clark","doi":"10.1145/3535508.3545530","DOIUrl":null,"url":null,"abstract":"We have developed a computational framework for constructing synthetic signal peptides from a base set of protein sequences. A large number of structured \"building blocks\", represented as m-step ordered pairs of amino acids, are extracted from the base sequences. Using a straightforward procedure, the building blocks enable the construction of a diverse set of synthetic signal peptides and targeting sequences that have the potential for industrial and therapeutic purposes. We have validated the proposed framework using several state-of-the-art sequence prediction platforms such as Signal-BLAST, SignalP-5.0, MULocDeep, and DeepMito. Experimental results show the computational framework can successfully generate synthetic signal peptides and targeting sequences and transform non-signaling sequences into synthetic signal peptides.","PeriodicalId":354504,"journal":{"name":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational framework for generating synthetic signal peptides\",\"authors\":\"T. Johnsten, Aishwarya Prakash, G. Daly, Ryan G. Benton, Tristan Clark\",\"doi\":\"10.1145/3535508.3545530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a computational framework for constructing synthetic signal peptides from a base set of protein sequences. A large number of structured \\\"building blocks\\\", represented as m-step ordered pairs of amino acids, are extracted from the base sequences. Using a straightforward procedure, the building blocks enable the construction of a diverse set of synthetic signal peptides and targeting sequences that have the potential for industrial and therapeutic purposes. We have validated the proposed framework using several state-of-the-art sequence prediction platforms such as Signal-BLAST, SignalP-5.0, MULocDeep, and DeepMito. Experimental results show the computational framework can successfully generate synthetic signal peptides and targeting sequences and transform non-signaling sequences into synthetic signal peptides.\",\"PeriodicalId\":354504,\"journal\":{\"name\":\"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3535508.3545530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3535508.3545530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们已经开发了一个计算框架,用于从蛋白质序列的基础集构建合成信号肽。从碱基序列中提取了大量结构化的“构建块”,表示为m步有序氨基酸对。使用简单的程序,构建模块可以构建多种合成信号肽和靶向序列,具有工业和治疗目的的潜力。我们使用几个最先进的序列预测平台(如Signal-BLAST、SignalP-5.0、MULocDeep和DeepMito)验证了所提出的框架。实验结果表明,该计算框架能够成功生成合成信号肽和靶向序列,并将非信号序列转化为合成信号肽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational framework for generating synthetic signal peptides
We have developed a computational framework for constructing synthetic signal peptides from a base set of protein sequences. A large number of structured "building blocks", represented as m-step ordered pairs of amino acids, are extracted from the base sequences. Using a straightforward procedure, the building blocks enable the construction of a diverse set of synthetic signal peptides and targeting sequences that have the potential for industrial and therapeutic purposes. We have validated the proposed framework using several state-of-the-art sequence prediction platforms such as Signal-BLAST, SignalP-5.0, MULocDeep, and DeepMito. Experimental results show the computational framework can successfully generate synthetic signal peptides and targeting sequences and transform non-signaling sequences into synthetic signal peptides.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信