Android恶意软件的取证分析——恶意软件是如何编写的,如何被检测到?

Kevin Allix, Quentin Jérôme, Tegawendé F. Bissyandé, Jacques Klein, R. State, Yves Le Traon
{"title":"Android恶意软件的取证分析——恶意软件是如何编写的,如何被检测到?","authors":"Kevin Allix, Quentin Jérôme, Tegawendé F. Bissyandé, Jacques Klein, R. State, Yves Le Traon","doi":"10.1109/COMPSAC.2014.61","DOIUrl":null,"url":null,"abstract":"We consider in this paper the analysis of a large set of malware and benign applications from the Android ecosystem. Although a large body of research work has dealt with Android malware over the last years, none has addressed it from a forensic point of view. After collecting over 500,000 applications from user markets and research repositories, we perform an analysis that yields precious insights on the writing process of Android malware. This study also explores some strange artifacts in the datasets, and the divergent capabilities of state-of-the-art antivirus to recognize/define malware. We further highlight some major weak usage and misunderstanding of Android security by the criminal community and show some patterns in their operational flow. Finally, using insights from this analysis, we build a naive malware detection scheme that could complement existing anti virus software.","PeriodicalId":106871,"journal":{"name":"2014 IEEE 38th Annual Computer Software and Applications Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"A Forensic Analysis of Android Malware -- How is Malware Written and How it Could Be Detected?\",\"authors\":\"Kevin Allix, Quentin Jérôme, Tegawendé F. Bissyandé, Jacques Klein, R. State, Yves Le Traon\",\"doi\":\"10.1109/COMPSAC.2014.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider in this paper the analysis of a large set of malware and benign applications from the Android ecosystem. Although a large body of research work has dealt with Android malware over the last years, none has addressed it from a forensic point of view. After collecting over 500,000 applications from user markets and research repositories, we perform an analysis that yields precious insights on the writing process of Android malware. This study also explores some strange artifacts in the datasets, and the divergent capabilities of state-of-the-art antivirus to recognize/define malware. We further highlight some major weak usage and misunderstanding of Android security by the criminal community and show some patterns in their operational flow. Finally, using insights from this analysis, we build a naive malware detection scheme that could complement existing anti virus software.\",\"PeriodicalId\":106871,\"journal\":{\"name\":\"2014 IEEE 38th Annual Computer Software and Applications Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 38th Annual Computer Software and Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPSAC.2014.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 38th Annual Computer Software and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC.2014.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

在本文中,我们考虑对来自Android生态系统的大量恶意软件和良性应用程序进行分析。尽管在过去的几年里有大量的研究工作涉及Android恶意软件,但没有一个从法医的角度来解决这个问题。在从用户市场和研究存储库中收集了超过50万个应用程序后,我们对Android恶意软件的编写过程进行了分析,得出了宝贵的见解。本研究还探讨了数据集中的一些奇怪的工件,以及最先进的反病毒软件识别/定义恶意软件的不同功能。我们进一步强调了犯罪团体对Android安全的一些主要弱点和误解,并展示了他们的操作流程中的一些模式。最后,利用分析得出的见解,我们构建了一个朴素的恶意软件检测方案,可以补充现有的防病毒软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Forensic Analysis of Android Malware -- How is Malware Written and How it Could Be Detected?
We consider in this paper the analysis of a large set of malware and benign applications from the Android ecosystem. Although a large body of research work has dealt with Android malware over the last years, none has addressed it from a forensic point of view. After collecting over 500,000 applications from user markets and research repositories, we perform an analysis that yields precious insights on the writing process of Android malware. This study also explores some strange artifacts in the datasets, and the divergent capabilities of state-of-the-art antivirus to recognize/define malware. We further highlight some major weak usage and misunderstanding of Android security by the criminal community and show some patterns in their operational flow. Finally, using insights from this analysis, we build a naive malware detection scheme that could complement existing anti virus software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信