使用语义索引增强搜索结果聚类

S. Nguyen, G. Jaskiewicz, Wojciech Swieboda, H. Nguyen
{"title":"使用语义索引增强搜索结果聚类","authors":"S. Nguyen, G. Jaskiewicz, Wojciech Swieboda, H. Nguyen","doi":"10.1145/2350716.2350729","DOIUrl":null,"url":null,"abstract":"Semantic search results clustering is one of the most wanted functionalities of many information retrieval systems including general web search engines as well as domain specific article portals or digital libraries. It may advice the users to describe the need for information in a more precise way. In this paper, we discuss a framework of document description extension which utilizes domain knowledge and semantic similarity. Our idea is based on application of Tolerance Rough Set Model, semantic information extracted from source text and domain ontology to approximate concepts associated with documents and to enrich the vector representation. Some document representation models including document meta-data, citations and semantic information build using MeSH ontology. We compare those models in a search result clustering problem over the freely accessed biomedical research articles from Pubmed Cetral (PMC) portal. The experimental results are showing the advantages of the proposed models.","PeriodicalId":208300,"journal":{"name":"Proceedings of the 3rd Symposium on Information and Communication Technology","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Enhancing search result clustering with semantic indexing\",\"authors\":\"S. Nguyen, G. Jaskiewicz, Wojciech Swieboda, H. Nguyen\",\"doi\":\"10.1145/2350716.2350729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic search results clustering is one of the most wanted functionalities of many information retrieval systems including general web search engines as well as domain specific article portals or digital libraries. It may advice the users to describe the need for information in a more precise way. In this paper, we discuss a framework of document description extension which utilizes domain knowledge and semantic similarity. Our idea is based on application of Tolerance Rough Set Model, semantic information extracted from source text and domain ontology to approximate concepts associated with documents and to enrich the vector representation. Some document representation models including document meta-data, citations and semantic information build using MeSH ontology. We compare those models in a search result clustering problem over the freely accessed biomedical research articles from Pubmed Cetral (PMC) portal. The experimental results are showing the advantages of the proposed models.\",\"PeriodicalId\":208300,\"journal\":{\"name\":\"Proceedings of the 3rd Symposium on Information and Communication Technology\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd Symposium on Information and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2350716.2350729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd Symposium on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2350716.2350729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

语义搜索结果聚类是许多信息检索系统最需要的功能之一,包括一般的web搜索引擎以及特定领域的文章门户或数字图书馆。它可能会建议用户以更精确的方式描述对信息的需求。本文讨论了一种利用领域知识和语义相似度的文档描述扩展框架。我们的想法是基于应用容忍粗糙集模型,从源文本和领域本体中提取语义信息来近似与文档相关的概念,并丰富向量表示。利用MeSH本体构建了包括元数据、引文和语义信息在内的文档表示模型。我们在Pubmed central (PMC)门户网站免费获取的生物医学研究文章的搜索结果聚类问题上比较了这些模型。实验结果表明了所提模型的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing search result clustering with semantic indexing
Semantic search results clustering is one of the most wanted functionalities of many information retrieval systems including general web search engines as well as domain specific article portals or digital libraries. It may advice the users to describe the need for information in a more precise way. In this paper, we discuss a framework of document description extension which utilizes domain knowledge and semantic similarity. Our idea is based on application of Tolerance Rough Set Model, semantic information extracted from source text and domain ontology to approximate concepts associated with documents and to enrich the vector representation. Some document representation models including document meta-data, citations and semantic information build using MeSH ontology. We compare those models in a search result clustering problem over the freely accessed biomedical research articles from Pubmed Cetral (PMC) portal. The experimental results are showing the advantages of the proposed models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信