Tijana Tuteric, Aleksandra Vulovic, S. Cvijić, S. Ibrić, N. Filipovic
{"title":"循环室尺寸对商用干粉吸入器气溶胶输送效率的影响","authors":"Tijana Tuteric, Aleksandra Vulovic, S. Cvijić, S. Ibrić, N. Filipovic","doi":"10.1109/BIBE.2017.00011","DOIUrl":null,"url":null,"abstract":"Aim of this study was to analyze how modifications in circulation chamber dimensions affect aerosol particle deposition in a Dry Powder Inhaler (DPI) Aerolizer®. Combining computational fluid dynamics (CFD), for simulation of fluid flow (air), with discrete phase model (DPM) for particles simulation, we can better understand particle dispersion within inhalers air flow field. Input in the simulation was 20mg of aerosol particles with initial velocity of 11,79166m/s. Dimension change influences maximum velocities, as well as percentage of deposited particles. Based on these information we were able to calculate the number of particles on the outlet and compare efficiency reduction when circulation chamber height increased. Knowledge obtained in this way can help in device performance optimization.","PeriodicalId":262603,"journal":{"name":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Effect of Circulation Chamber Dimensions on Aerosol Delivery Efficiency of a Commercial Dry Powder Inhaler Aerolizer®\",\"authors\":\"Tijana Tuteric, Aleksandra Vulovic, S. Cvijić, S. Ibrić, N. Filipovic\",\"doi\":\"10.1109/BIBE.2017.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim of this study was to analyze how modifications in circulation chamber dimensions affect aerosol particle deposition in a Dry Powder Inhaler (DPI) Aerolizer®. Combining computational fluid dynamics (CFD), for simulation of fluid flow (air), with discrete phase model (DPM) for particles simulation, we can better understand particle dispersion within inhalers air flow field. Input in the simulation was 20mg of aerosol particles with initial velocity of 11,79166m/s. Dimension change influences maximum velocities, as well as percentage of deposited particles. Based on these information we were able to calculate the number of particles on the outlet and compare efficiency reduction when circulation chamber height increased. Knowledge obtained in this way can help in device performance optimization.\",\"PeriodicalId\":262603,\"journal\":{\"name\":\"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2017.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2017.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Circulation Chamber Dimensions on Aerosol Delivery Efficiency of a Commercial Dry Powder Inhaler Aerolizer®
Aim of this study was to analyze how modifications in circulation chamber dimensions affect aerosol particle deposition in a Dry Powder Inhaler (DPI) Aerolizer®. Combining computational fluid dynamics (CFD), for simulation of fluid flow (air), with discrete phase model (DPM) for particles simulation, we can better understand particle dispersion within inhalers air flow field. Input in the simulation was 20mg of aerosol particles with initial velocity of 11,79166m/s. Dimension change influences maximum velocities, as well as percentage of deposited particles. Based on these information we were able to calculate the number of particles on the outlet and compare efficiency reduction when circulation chamber height increased. Knowledge obtained in this way can help in device performance optimization.