{"title":"具有网关位置和QoS约束的无线网状路由器布局","authors":"Chun-Cheng Lin, Tung-Huei Chen, Shun-Yu Jhong","doi":"10.4108/EAI.19-8-2015.2260962","DOIUrl":null,"url":null,"abstract":"The past studies on router node placement for wireless mesh networks (WMNs) did not consider placement of Internet gateways. Therefore, mesh routers and mesh clients can only communicate locally. The problem in this paper is to maximize both network connectivity and client coverage for the router node placement in WMNs consisting of mesh routers, mesh clients, and Internet gateways, subject to three QoS constraints: delay, relay load, and Internet gateway capacity. By visualizing the placements in previous works, we discover two main drawbacks: overlapping and coverless. To solve them, this paper presents a novel particle swarm optimization approach. Performance of the proposed approach is verified by simulation.","PeriodicalId":152628,"journal":{"name":"2015 11th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QSHINE)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Wireless mesh router placement with constraints of gateway positions and QoS\",\"authors\":\"Chun-Cheng Lin, Tung-Huei Chen, Shun-Yu Jhong\",\"doi\":\"10.4108/EAI.19-8-2015.2260962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The past studies on router node placement for wireless mesh networks (WMNs) did not consider placement of Internet gateways. Therefore, mesh routers and mesh clients can only communicate locally. The problem in this paper is to maximize both network connectivity and client coverage for the router node placement in WMNs consisting of mesh routers, mesh clients, and Internet gateways, subject to three QoS constraints: delay, relay load, and Internet gateway capacity. By visualizing the placements in previous works, we discover two main drawbacks: overlapping and coverless. To solve them, this paper presents a novel particle swarm optimization approach. Performance of the proposed approach is verified by simulation.\",\"PeriodicalId\":152628,\"journal\":{\"name\":\"2015 11th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QSHINE)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 11th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QSHINE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/EAI.19-8-2015.2260962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 11th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QSHINE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/EAI.19-8-2015.2260962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wireless mesh router placement with constraints of gateway positions and QoS
The past studies on router node placement for wireless mesh networks (WMNs) did not consider placement of Internet gateways. Therefore, mesh routers and mesh clients can only communicate locally. The problem in this paper is to maximize both network connectivity and client coverage for the router node placement in WMNs consisting of mesh routers, mesh clients, and Internet gateways, subject to three QoS constraints: delay, relay load, and Internet gateway capacity. By visualizing the placements in previous works, we discover two main drawbacks: overlapping and coverless. To solve them, this paper presents a novel particle swarm optimization approach. Performance of the proposed approach is verified by simulation.