{"title":"机器学习如何取代传统的口译","authors":"D. Sacrey, R. Roden","doi":"10.3997/2214-4609.201803011","DOIUrl":null,"url":null,"abstract":"This presentation shows severaed classification process in successful case histories of the sample-basully finding hydrocarbons and delineating reservoir limits. This type of machine learning is especially good for thin bed exploration as it allows for stratigraphic pattern recognition below conventional seismic tuning.","PeriodicalId":231338,"journal":{"name":"First EAGE/PESGB Workshop Machine Learning","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"How Machine Learning Is Replacing Conventional Interpretation\",\"authors\":\"D. Sacrey, R. Roden\",\"doi\":\"10.3997/2214-4609.201803011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This presentation shows severaed classification process in successful case histories of the sample-basully finding hydrocarbons and delineating reservoir limits. This type of machine learning is especially good for thin bed exploration as it allows for stratigraphic pattern recognition below conventional seismic tuning.\",\"PeriodicalId\":231338,\"journal\":{\"name\":\"First EAGE/PESGB Workshop Machine Learning\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First EAGE/PESGB Workshop Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201803011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First EAGE/PESGB Workshop Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201803011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
How Machine Learning Is Replacing Conventional Interpretation
This presentation shows severaed classification process in successful case histories of the sample-basully finding hydrocarbons and delineating reservoir limits. This type of machine learning is especially good for thin bed exploration as it allows for stratigraphic pattern recognition below conventional seismic tuning.