性别包容性语法错误的强化纠正

Gunnar Lund, Kostiantyn Omelianchuk, Igor Samokhin
{"title":"性别包容性语法错误的强化纠正","authors":"Gunnar Lund, Kostiantyn Omelianchuk, Igor Samokhin","doi":"10.48550/arXiv.2306.07415","DOIUrl":null,"url":null,"abstract":"In this paper we show that GEC systems display gender bias related to the use of masculine and feminine terms and the gender-neutral singular “they”. We develop parallel datasets of texts with masculine and feminine terms, and singular “they”, and use them to quantify gender bias in three competitive GEC systems. We contribute a novel data augmentation technique for singular “they” leveraging linguistic insights about its distribution relative to plural “they”. We demonstrate that both this data augmentation technique and a refinement of a similar augmentation technique for masculine and feminine terms can generate training data that reduces bias in GEC systems, especially with respect to singular “they” while maintaining the same level of quality.","PeriodicalId":363390,"journal":{"name":"Workshop on Innovative Use of NLP for Building Educational Applications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gender-Inclusive Grammatical Error Correction through Augmentation\",\"authors\":\"Gunnar Lund, Kostiantyn Omelianchuk, Igor Samokhin\",\"doi\":\"10.48550/arXiv.2306.07415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we show that GEC systems display gender bias related to the use of masculine and feminine terms and the gender-neutral singular “they”. We develop parallel datasets of texts with masculine and feminine terms, and singular “they”, and use them to quantify gender bias in three competitive GEC systems. We contribute a novel data augmentation technique for singular “they” leveraging linguistic insights about its distribution relative to plural “they”. We demonstrate that both this data augmentation technique and a refinement of a similar augmentation technique for masculine and feminine terms can generate training data that reduces bias in GEC systems, especially with respect to singular “they” while maintaining the same level of quality.\",\"PeriodicalId\":363390,\"journal\":{\"name\":\"Workshop on Innovative Use of NLP for Building Educational Applications\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Innovative Use of NLP for Building Educational Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2306.07415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Innovative Use of NLP for Building Educational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.07415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了GEC系统在使用男性和女性术语以及中性单数“they”方面表现出性别偏见。我们开发了包含阳性和阴性术语以及单数“他们”的平行文本数据集,并使用它们来量化三个竞争性GEC系统中的性别偏见。我们为单数“they”提供了一种新的数据增强技术,利用语言学上的洞察力来了解其相对于复数“they”的分布。我们证明了这种数据增强技术和对男性和女性术语的类似增强技术的改进都可以生成减少GEC系统中偏差的训练数据,特别是关于单数“他们”,同时保持相同的质量水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gender-Inclusive Grammatical Error Correction through Augmentation
In this paper we show that GEC systems display gender bias related to the use of masculine and feminine terms and the gender-neutral singular “they”. We develop parallel datasets of texts with masculine and feminine terms, and singular “they”, and use them to quantify gender bias in three competitive GEC systems. We contribute a novel data augmentation technique for singular “they” leveraging linguistic insights about its distribution relative to plural “they”. We demonstrate that both this data augmentation technique and a refinement of a similar augmentation technique for masculine and feminine terms can generate training data that reduces bias in GEC systems, especially with respect to singular “they” while maintaining the same level of quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信