基于事件优化的部分可观察马尔可夫决策过程问题的一个特例

Junyu Zhang
{"title":"基于事件优化的部分可观察马尔可夫决策过程问题的一个特例","authors":"Junyu Zhang","doi":"10.1109/ICIT.2016.7474986","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss a kind of partially observable Markov decision process (POMDP) problem by the event-based optimization which is proposed in [4]. A POMDP ([7] and [8]) is a generalization of a standard completely observable Markov decision process that allows imperfect information about states of the system. Policy iteration algorithms for POMDPs have proved to be impractical as it is very difficult to implement. Thus, most work with POMDPs has used value iteration. But for a special case of POMDP, we can formulate it to an MDP problem. Then we can use our sensitivity view to derive the corresponding average reward difference formula. Based on that and the idea of event-based optimization, we use a single sample path to estimate aggregated potentials. Then we develop policy iteration (PI) algorithms.","PeriodicalId":116715,"journal":{"name":"2016 IEEE International Conference on Industrial Technology (ICIT)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A special case of partially observable Markov decision processes problem by event-based optimization\",\"authors\":\"Junyu Zhang\",\"doi\":\"10.1109/ICIT.2016.7474986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss a kind of partially observable Markov decision process (POMDP) problem by the event-based optimization which is proposed in [4]. A POMDP ([7] and [8]) is a generalization of a standard completely observable Markov decision process that allows imperfect information about states of the system. Policy iteration algorithms for POMDPs have proved to be impractical as it is very difficult to implement. Thus, most work with POMDPs has used value iteration. But for a special case of POMDP, we can formulate it to an MDP problem. Then we can use our sensitivity view to derive the corresponding average reward difference formula. Based on that and the idea of event-based optimization, we use a single sample path to estimate aggregated potentials. Then we develop policy iteration (PI) algorithms.\",\"PeriodicalId\":116715,\"journal\":{\"name\":\"2016 IEEE International Conference on Industrial Technology (ICIT)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Industrial Technology (ICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2016.7474986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2016.7474986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文利用文献[4]中提出的基于事件的优化方法,讨论了一类部分可观察马尔可夫决策过程(POMDP)问题。POMDP([7]和[8])是标准的完全可观察马尔可夫决策过程的推广,该决策过程允许关于系统状态的不完全信息。pomdp的策略迭代算法已经被证明是不切实际的,因为它很难实现。因此,大多数使用pomdp的工作都使用了值迭代。但对于POMDP的特殊情况,我们可以将其表述为MDP问题。然后利用敏感性观点推导出相应的平均报酬差公式。在此基础上,结合基于事件优化的思想,采用单样本路径估计聚合电位。然后我们开发了策略迭代(PI)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A special case of partially observable Markov decision processes problem by event-based optimization
In this paper, we discuss a kind of partially observable Markov decision process (POMDP) problem by the event-based optimization which is proposed in [4]. A POMDP ([7] and [8]) is a generalization of a standard completely observable Markov decision process that allows imperfect information about states of the system. Policy iteration algorithms for POMDPs have proved to be impractical as it is very difficult to implement. Thus, most work with POMDPs has used value iteration. But for a special case of POMDP, we can formulate it to an MDP problem. Then we can use our sensitivity view to derive the corresponding average reward difference formula. Based on that and the idea of event-based optimization, we use a single sample path to estimate aggregated potentials. Then we develop policy iteration (PI) algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信