基于语义相似度的HAC和K-Mean算法聚类文档

Karwan Jacksi, Rowaida Kh. Ibrahim, Subhi R. M. Zeebaree, R. Zebari, M. A. Sadeeq
{"title":"基于语义相似度的HAC和K-Mean算法聚类文档","authors":"Karwan Jacksi, Rowaida Kh. Ibrahim, Subhi R. M. Zeebaree, R. Zebari, M. A. Sadeeq","doi":"10.1109/ICOASE51841.2020.9436570","DOIUrl":null,"url":null,"abstract":"The continuing success of the Internet has greatly increased the number of text documents in electronic formats. The techniques for grouping these documents into meaningful collections have become mission-critical. The traditional method of compiling documents based on statistical features and grouping did use syntactic rather than semantic. This article introduces a new method for grouping documents based on semantic similarity. This process is accomplished by identifying document summaries from Wikipedia and IMDB datasets, then deriving them using the NLTK dictionary. A vector space afterward is modeled with TFIDF, and the clustering is performed using the HAC and K-mean algorithms. The results are compared and visualized as an interactive webpage.","PeriodicalId":126112,"journal":{"name":"2020 International Conference on Advanced Science and Engineering (ICOASE)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Clustering Documents based on Semantic Similarity using HAC and K-Mean Algorithms\",\"authors\":\"Karwan Jacksi, Rowaida Kh. Ibrahim, Subhi R. M. Zeebaree, R. Zebari, M. A. Sadeeq\",\"doi\":\"10.1109/ICOASE51841.2020.9436570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continuing success of the Internet has greatly increased the number of text documents in electronic formats. The techniques for grouping these documents into meaningful collections have become mission-critical. The traditional method of compiling documents based on statistical features and grouping did use syntactic rather than semantic. This article introduces a new method for grouping documents based on semantic similarity. This process is accomplished by identifying document summaries from Wikipedia and IMDB datasets, then deriving them using the NLTK dictionary. A vector space afterward is modeled with TFIDF, and the clustering is performed using the HAC and K-mean algorithms. The results are compared and visualized as an interactive webpage.\",\"PeriodicalId\":126112,\"journal\":{\"name\":\"2020 International Conference on Advanced Science and Engineering (ICOASE)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Advanced Science and Engineering (ICOASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOASE51841.2020.9436570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Advanced Science and Engineering (ICOASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOASE51841.2020.9436570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

因特网的持续成功大大增加了电子格式文本文档的数量。将这些文档分组为有意义的集合的技术已经成为关键任务。传统的基于统计特征和分组的文档编制方法使用的是语法而不是语义。本文介绍了一种基于语义相似度的文档分组方法。这个过程是通过识别来自Wikipedia和IMDB数据集的文档摘要,然后使用NLTK字典派生它们来完成的。然后用TFIDF对向量空间进行建模,并使用HAC和K-mean算法进行聚类。结果被比较和可视化为一个交互式网页。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering Documents based on Semantic Similarity using HAC and K-Mean Algorithms
The continuing success of the Internet has greatly increased the number of text documents in electronic formats. The techniques for grouping these documents into meaningful collections have become mission-critical. The traditional method of compiling documents based on statistical features and grouping did use syntactic rather than semantic. This article introduces a new method for grouping documents based on semantic similarity. This process is accomplished by identifying document summaries from Wikipedia and IMDB datasets, then deriving them using the NLTK dictionary. A vector space afterward is modeled with TFIDF, and the clustering is performed using the HAC and K-mean algorithms. The results are compared and visualized as an interactive webpage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信