南极半岛西海岸混相事件期间降水垂直结构的实测和模拟

D. Pishniak, S. Razumnyi
{"title":"南极半岛西海岸混相事件期间降水垂直结构的实测和模拟","authors":"D. Pishniak, S. Razumnyi","doi":"10.33275/1727-7485.1.2022.689","DOIUrl":null,"url":null,"abstract":"Precipitation structures are easy to detect, however, the mesoscale atmospheric processes which they reflect are challenging to understand in Polar Regions and hard to model numerically. Currently, the spatial distribution of precipitation can be tracked at the resolution of minutes and seconds. For this purpose, the researchers at the Ukrainian Antarctic Akademik Vernadsky station employ several near-ground measurement systems and the Micro Rain Radar for remote vertical measurements. Measurements show stochastic precipitation variability caused by turbulence, precipitation bands related to the atmospheric processes of its formation, phase transition (melting) zones, and wind shears. The time scale of bands in the stratiform precipitation typically varied in the range of 5—15 minutes and corresponded to the 2—15 km spatial scale of atmospheric circulations according to the modeled parameters of the atmosphere. The Polar Weather Research and Forecast (Polar WRF) model was used to reveal the general atmospheric conditions. We also tested and evaluated its ability to reproduce small structures. A simple method based on typical model variables is proposed to identify the precipitation melting layer in the simulation data, similar to that determined by radars. The results were satisfyingly consistent with the position of the 0 °C isotherm in the model and with the radar measurements. In addition, the method highlighted supercooled mixed-phase precipitation. Modeling showed good results for large-scale processes like atmospheric fronts and general air mass features in the case study. However, even at the 1 km resolution the simulation reproduced thin mesoscale precipitation features smoothly, which sometimes looks unrealistic. As for other precipitation peculiarities, like band inclination, melting layer position, and mixed-phase zones, the Polar WRF model demonstrates high consistency with observations. The model can describe the atmospheric conditions except for the investigation of precipitation-initiating mechanisms, which still is a challenge for modeling at a small scale.","PeriodicalId":370867,"journal":{"name":"Ukrainian Antarctic Journal","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measured and modeled vertical structure of precipitation during mixed-phase event near the West Coast of the Antarctic Peninsula\",\"authors\":\"D. Pishniak, S. Razumnyi\",\"doi\":\"10.33275/1727-7485.1.2022.689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precipitation structures are easy to detect, however, the mesoscale atmospheric processes which they reflect are challenging to understand in Polar Regions and hard to model numerically. Currently, the spatial distribution of precipitation can be tracked at the resolution of minutes and seconds. For this purpose, the researchers at the Ukrainian Antarctic Akademik Vernadsky station employ several near-ground measurement systems and the Micro Rain Radar for remote vertical measurements. Measurements show stochastic precipitation variability caused by turbulence, precipitation bands related to the atmospheric processes of its formation, phase transition (melting) zones, and wind shears. The time scale of bands in the stratiform precipitation typically varied in the range of 5—15 minutes and corresponded to the 2—15 km spatial scale of atmospheric circulations according to the modeled parameters of the atmosphere. The Polar Weather Research and Forecast (Polar WRF) model was used to reveal the general atmospheric conditions. We also tested and evaluated its ability to reproduce small structures. A simple method based on typical model variables is proposed to identify the precipitation melting layer in the simulation data, similar to that determined by radars. The results were satisfyingly consistent with the position of the 0 °C isotherm in the model and with the radar measurements. In addition, the method highlighted supercooled mixed-phase precipitation. Modeling showed good results for large-scale processes like atmospheric fronts and general air mass features in the case study. However, even at the 1 km resolution the simulation reproduced thin mesoscale precipitation features smoothly, which sometimes looks unrealistic. As for other precipitation peculiarities, like band inclination, melting layer position, and mixed-phase zones, the Polar WRF model demonstrates high consistency with observations. The model can describe the atmospheric conditions except for the investigation of precipitation-initiating mechanisms, which still is a challenge for modeling at a small scale.\",\"PeriodicalId\":370867,\"journal\":{\"name\":\"Ukrainian Antarctic Journal\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Antarctic Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33275/1727-7485.1.2022.689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Antarctic Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33275/1727-7485.1.2022.689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

降水结构很容易被探测到,然而,它们所反映的中尺度大气过程在极地地区很难理解,也很难进行数值模拟。目前,降水的空间分布可以以分、秒的分辨率进行跟踪。为此目的,乌克兰南极维尔纳德斯基科考站的研究人员使用了几个近地测量系统和微型雨雷达进行远程垂直测量。测量结果显示,湍流、与大气过程有关的降水带、相变(融化)区和风切变引起了随机降水变率。层状降水波段的时间尺度一般在5 ~ 15 min范围内变化,对应大气环流的2 ~ 15 km空间尺度。极地天气研究与预报(Polar WRF)模式揭示了一般的大气状况。我们还测试和评估了它复制小结构的能力。提出了一种基于典型模式变量的简单方法来识别模拟数据中的降水融化层,类似于雷达识别。计算结果与模型中0°C等温线的位置和雷达测量结果吻合得很好。此外,该方法强调了过冷混合相沉淀。在实例研究中,对大气锋面和一般气团特征等大尺度过程的模拟结果良好。然而,即使在1 km分辨率下,模拟也能很好地再现薄的中尺度降水特征,有时看起来不太现实。对于其他降水特征,如带倾角、熔融层位置和混合相带,极地WRF模式与观测值具有较高的一致性。除了对降水启动机制的研究之外,该模式可以描述大气条件,这对于小尺度的模式来说仍然是一个挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measured and modeled vertical structure of precipitation during mixed-phase event near the West Coast of the Antarctic Peninsula
Precipitation structures are easy to detect, however, the mesoscale atmospheric processes which they reflect are challenging to understand in Polar Regions and hard to model numerically. Currently, the spatial distribution of precipitation can be tracked at the resolution of minutes and seconds. For this purpose, the researchers at the Ukrainian Antarctic Akademik Vernadsky station employ several near-ground measurement systems and the Micro Rain Radar for remote vertical measurements. Measurements show stochastic precipitation variability caused by turbulence, precipitation bands related to the atmospheric processes of its formation, phase transition (melting) zones, and wind shears. The time scale of bands in the stratiform precipitation typically varied in the range of 5—15 minutes and corresponded to the 2—15 km spatial scale of atmospheric circulations according to the modeled parameters of the atmosphere. The Polar Weather Research and Forecast (Polar WRF) model was used to reveal the general atmospheric conditions. We also tested and evaluated its ability to reproduce small structures. A simple method based on typical model variables is proposed to identify the precipitation melting layer in the simulation data, similar to that determined by radars. The results were satisfyingly consistent with the position of the 0 °C isotherm in the model and with the radar measurements. In addition, the method highlighted supercooled mixed-phase precipitation. Modeling showed good results for large-scale processes like atmospheric fronts and general air mass features in the case study. However, even at the 1 km resolution the simulation reproduced thin mesoscale precipitation features smoothly, which sometimes looks unrealistic. As for other precipitation peculiarities, like band inclination, melting layer position, and mixed-phase zones, the Polar WRF model demonstrates high consistency with observations. The model can describe the atmospheric conditions except for the investigation of precipitation-initiating mechanisms, which still is a challenge for modeling at a small scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信