导向机器人多模态行为规划框架

Zonghao Mu, Wei Fang, Shiqiang Zhu, Tianlei Jin, Wei Song, Xiangming Xi, Qiulan Huang, J. Gu, Songyu Yuan
{"title":"导向机器人多模态行为规划框架","authors":"Zonghao Mu, Wei Fang, Shiqiang Zhu, Tianlei Jin, Wei Song, Xiangming Xi, Qiulan Huang, J. Gu, Songyu Yuan","doi":"10.1109/ROBIO55434.2022.10011739","DOIUrl":null,"url":null,"abstract":"In this paper we propose a multi-modal behavior planning framework for guide robots, to better assist the visually impaired to select safe paths in a cluttered space. Most prior robotic guiding systems only use physical contact, limiting their ability from operating in narrow and cluttered environments. Our multi-modal behavior planning framework is based on the Social Force Model(SFM) and the Monte Carlo Tree Search(MCTS). The proposed framework extracts robot behaviors' impact as the social force on human and predicts human motion, then employs the MCTS to search best multi-modal behavior policy. The proposed approach is deployed on a humanoid robot to guide a blind-folded person to safely travel in a complicated space.","PeriodicalId":151112,"journal":{"name":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-modal Behavior Planning Framework for Guide Robot\",\"authors\":\"Zonghao Mu, Wei Fang, Shiqiang Zhu, Tianlei Jin, Wei Song, Xiangming Xi, Qiulan Huang, J. Gu, Songyu Yuan\",\"doi\":\"10.1109/ROBIO55434.2022.10011739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a multi-modal behavior planning framework for guide robots, to better assist the visually impaired to select safe paths in a cluttered space. Most prior robotic guiding systems only use physical contact, limiting their ability from operating in narrow and cluttered environments. Our multi-modal behavior planning framework is based on the Social Force Model(SFM) and the Monte Carlo Tree Search(MCTS). The proposed framework extracts robot behaviors' impact as the social force on human and predicts human motion, then employs the MCTS to search best multi-modal behavior policy. The proposed approach is deployed on a humanoid robot to guide a blind-folded person to safely travel in a complicated space.\",\"PeriodicalId\":151112,\"journal\":{\"name\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO55434.2022.10011739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO55434.2022.10011739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了更好地帮助视障人士在杂乱的空间中选择安全的路径,本文提出了一种多模态的引导机器人行为规划框架。大多数先前的机器人导航系统只使用物理接触,限制了它们在狭窄和杂乱的环境中操作的能力。我们的多模态行为规划框架是基于社会力模型(SFM)和蒙特卡罗树搜索(MCTS)。该框架提取机器人行为作为社会力对人类的影响,并预测人类运动,然后利用MCTS算法搜索最佳多模态行为策略。该方法被部署在人形机器人上,用于引导蒙着眼睛的人在复杂的空间中安全行走。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-modal Behavior Planning Framework for Guide Robot
In this paper we propose a multi-modal behavior planning framework for guide robots, to better assist the visually impaired to select safe paths in a cluttered space. Most prior robotic guiding systems only use physical contact, limiting their ability from operating in narrow and cluttered environments. Our multi-modal behavior planning framework is based on the Social Force Model(SFM) and the Monte Carlo Tree Search(MCTS). The proposed framework extracts robot behaviors' impact as the social force on human and predicts human motion, then employs the MCTS to search best multi-modal behavior policy. The proposed approach is deployed on a humanoid robot to guide a blind-folded person to safely travel in a complicated space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信