完全图与环的边色笛卡尔积的适当着色距离

Ajay Arora, E. Cheng, Colton Magnant
{"title":"完全图与环的边色笛卡尔积的适当着色距离","authors":"Ajay Arora, E. Cheng, Colton Magnant","doi":"10.1142/s0129626419500166","DOIUrl":null,"url":null,"abstract":"An path that is edge-colored is called proper if no two consecutive edges receive the same color. A general graph that is edge-colored is called properly connected if, for every pair of vertices in the graph, there exists a properly colored path from one to the other. Given two vertices u and v in a properly connected graph G, the proper distance is the length of the shortest properly colored path from u to v. By considering a specific class of colorings that are properly connected for Cartesian products of complete and cyclic graphs, we present results on the proper distance between all pairs of vertices in the graph.","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proper Coloring Distance in Edge-Colored Cartesian Products of Complete Graphs and Cycles\",\"authors\":\"Ajay Arora, E. Cheng, Colton Magnant\",\"doi\":\"10.1142/s0129626419500166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An path that is edge-colored is called proper if no two consecutive edges receive the same color. A general graph that is edge-colored is called properly connected if, for every pair of vertices in the graph, there exists a properly colored path from one to the other. Given two vertices u and v in a properly connected graph G, the proper distance is the length of the shortest properly colored path from u to v. By considering a specific class of colorings that are properly connected for Cartesian products of complete and cyclic graphs, we present results on the proper distance between all pairs of vertices in the graph.\",\"PeriodicalId\":422436,\"journal\":{\"name\":\"Parallel Process. Lett.\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Process. Lett.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129626419500166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129626419500166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果没有两条连续的边获得相同的颜色,则称为正确的路径。如果对于图中的每一对顶点,存在一条从一个顶点到另一个顶点的适当着色的路径,则称为正确连通的一般图。给定适当连通图G中的两个顶点u和v,固有距离是u到v的最短适当着色路径的长度。通过考虑完全图和循环图的笛卡尔积的适当连通的一类特定着色,我们给出了图中所有顶点对之间的固有距离的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proper Coloring Distance in Edge-Colored Cartesian Products of Complete Graphs and Cycles
An path that is edge-colored is called proper if no two consecutive edges receive the same color. A general graph that is edge-colored is called properly connected if, for every pair of vertices in the graph, there exists a properly colored path from one to the other. Given two vertices u and v in a properly connected graph G, the proper distance is the length of the shortest properly colored path from u to v. By considering a specific class of colorings that are properly connected for Cartesian products of complete and cyclic graphs, we present results on the proper distance between all pairs of vertices in the graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信