使用基于场景的伪造生成关键的具体场景

D. Karunakaran, J. S. Berrio, Stewart Worrall, E. Nebot
{"title":"使用基于场景的伪造生成关键的具体场景","authors":"D. Karunakaran, J. S. Berrio, Stewart Worrall, E. Nebot","doi":"10.1109/RASSE54974.2022.9989690","DOIUrl":null,"url":null,"abstract":"Autonomous vehicles have the potential to lower the accident rate when compared to human driving. Moreover, it has been the driving force of automated vehicles’ rapid development over the last few years. In the higher Society of Automotive Engineers (SAE) automation level, the vehicle’s and passengers’ safety responsibility is transferred from the driver to the automated system, so thoroughly validating such a system is essential. Recently, academia and industry have embraced scenario-based evaluation as the complementary approach to road testing, reducing the overall testing effort required. It is essential to determine the system’s flaws before deploying it on public roads as there is no safety driver to guarantee the reliability of such a system. This paper proposes a Reinforcement Learning (RL) based scenario-based falsification method to search for a high-risk scenario in a pedestrian crossing traffic situation. We define a scenario as risky when a system under test (SUT) does not satisfy the requirement. The reward function for our RL approach is based on Intel’s Responsibility Sensitive Safety(RSS), Euclidean distance, and distance to a potential collision. Code and videos are available online at https://github.com/dkarunakaran/scenario_based_falsification.","PeriodicalId":382440,"journal":{"name":"2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Critical Concrete Scenario Generation Using Scenario-Based Falsification\",\"authors\":\"D. Karunakaran, J. S. Berrio, Stewart Worrall, E. Nebot\",\"doi\":\"10.1109/RASSE54974.2022.9989690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous vehicles have the potential to lower the accident rate when compared to human driving. Moreover, it has been the driving force of automated vehicles’ rapid development over the last few years. In the higher Society of Automotive Engineers (SAE) automation level, the vehicle’s and passengers’ safety responsibility is transferred from the driver to the automated system, so thoroughly validating such a system is essential. Recently, academia and industry have embraced scenario-based evaluation as the complementary approach to road testing, reducing the overall testing effort required. It is essential to determine the system’s flaws before deploying it on public roads as there is no safety driver to guarantee the reliability of such a system. This paper proposes a Reinforcement Learning (RL) based scenario-based falsification method to search for a high-risk scenario in a pedestrian crossing traffic situation. We define a scenario as risky when a system under test (SUT) does not satisfy the requirement. The reward function for our RL approach is based on Intel’s Responsibility Sensitive Safety(RSS), Euclidean distance, and distance to a potential collision. Code and videos are available online at https://github.com/dkarunakaran/scenario_based_falsification.\",\"PeriodicalId\":382440,\"journal\":{\"name\":\"2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RASSE54974.2022.9989690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RASSE54974.2022.9989690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

与人类驾驶相比,自动驾驶汽车有可能降低事故率。此外,它也是过去几年自动驾驶汽车快速发展的动力。在更高的汽车工程师学会(SAE)自动化级别中,车辆和乘客的安全责任从驾驶员转移到自动化系统,因此彻底验证这样的系统至关重要。最近,学术界和工业界已经将基于场景的评估作为道路测试的补充方法,从而减少了所需的总体测试工作。由于没有安全驾驶员来保证系统的可靠性,因此在公共道路上部署该系统之前,必须确定其缺陷。本文提出了一种基于强化学习(RL)的基于场景的伪造方法,用于行人过马路交通场景中高风险场景的搜索。当被测系统(SUT)不满足需求时,我们将场景定义为有风险的。RL方法的奖励函数基于英特尔的责任敏感安全(RSS)、欧几里得距离和到潜在碰撞的距离。代码和视频可在https://github.com/dkarunakaran/scenario_based_falsification上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical Concrete Scenario Generation Using Scenario-Based Falsification
Autonomous vehicles have the potential to lower the accident rate when compared to human driving. Moreover, it has been the driving force of automated vehicles’ rapid development over the last few years. In the higher Society of Automotive Engineers (SAE) automation level, the vehicle’s and passengers’ safety responsibility is transferred from the driver to the automated system, so thoroughly validating such a system is essential. Recently, academia and industry have embraced scenario-based evaluation as the complementary approach to road testing, reducing the overall testing effort required. It is essential to determine the system’s flaws before deploying it on public roads as there is no safety driver to guarantee the reliability of such a system. This paper proposes a Reinforcement Learning (RL) based scenario-based falsification method to search for a high-risk scenario in a pedestrian crossing traffic situation. We define a scenario as risky when a system under test (SUT) does not satisfy the requirement. The reward function for our RL approach is based on Intel’s Responsibility Sensitive Safety(RSS), Euclidean distance, and distance to a potential collision. Code and videos are available online at https://github.com/dkarunakaran/scenario_based_falsification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信