传感器网络中使用物理和统计方法的数据估计

Yingshu Li, Chunyu Ai, Wiwek P. Deshmukh, Yiwei Wu
{"title":"传感器网络中使用物理和统计方法的数据估计","authors":"Yingshu Li, Chunyu Ai, Wiwek P. Deshmukh, Yiwei Wu","doi":"10.1109/ICDCS.2008.22","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks (WSNs) are employed in many applications in order to collect data. One key challenge is to minimize energy consumption to prolong network lifetime. A scheme of making some nodes asleep and estimating their values according to the other active nodespsila readings has been proved energy-efficient. For the purpose of improving the precision of estimation, we propose two powerful estimation models, data estimation using physical model (DEPM) and data estimation using statistical model (DESM). DEPM estimates the values of sleeping nodes by the physical characteristics of sensed attributes, while DESM estimates the values through the spatial and temporal correlations of the nodes. Experimental results on real sensor networks show that the proposed techniques provide accurate estimations and conserve energy efficiently.","PeriodicalId":240205,"journal":{"name":"2008 The 28th International Conference on Distributed Computing Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Data Estimation in Sensor Networks Using Physical and Statistical Methodologies\",\"authors\":\"Yingshu Li, Chunyu Ai, Wiwek P. Deshmukh, Yiwei Wu\",\"doi\":\"10.1109/ICDCS.2008.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless sensor networks (WSNs) are employed in many applications in order to collect data. One key challenge is to minimize energy consumption to prolong network lifetime. A scheme of making some nodes asleep and estimating their values according to the other active nodespsila readings has been proved energy-efficient. For the purpose of improving the precision of estimation, we propose two powerful estimation models, data estimation using physical model (DEPM) and data estimation using statistical model (DESM). DEPM estimates the values of sleeping nodes by the physical characteristics of sensed attributes, while DESM estimates the values through the spatial and temporal correlations of the nodes. Experimental results on real sensor networks show that the proposed techniques provide accurate estimations and conserve energy efficiently.\",\"PeriodicalId\":240205,\"journal\":{\"name\":\"2008 The 28th International Conference on Distributed Computing Systems\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 The 28th International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2008.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The 28th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2008.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

无线传感器网络(WSNs)在许多应用中用于数据采集。一个关键的挑战是最小化能耗以延长网络寿命。一种使一些节点处于休眠状态,并根据其他活动节点的状态值估计其值的方案已被证明是节能的。为了提高估计的精度,我们提出了两种强大的估计模型:物理模型数据估计(DEPM)和统计模型数据估计(DESM)。DEPM通过感知属性的物理特征来估计睡眠节点的值,而DESM通过节点的时空相关性来估计值。在实际传感器网络上的实验结果表明,该方法能提供准确的估计,并能有效地节约能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Estimation in Sensor Networks Using Physical and Statistical Methodologies
Wireless sensor networks (WSNs) are employed in many applications in order to collect data. One key challenge is to minimize energy consumption to prolong network lifetime. A scheme of making some nodes asleep and estimating their values according to the other active nodespsila readings has been proved energy-efficient. For the purpose of improving the precision of estimation, we propose two powerful estimation models, data estimation using physical model (DEPM) and data estimation using statistical model (DESM). DEPM estimates the values of sleeping nodes by the physical characteristics of sensed attributes, while DESM estimates the values through the spatial and temporal correlations of the nodes. Experimental results on real sensor networks show that the proposed techniques provide accurate estimations and conserve energy efficiently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信