基于自适应神经模糊推理系统的过流继电器曲线建模及其在实际工业电力系统中的应用

A. Tjahjono, D. O. Anggriawan, A. Priyadi, M. Pujiantara, M. Purnomo
{"title":"基于自适应神经模糊推理系统的过流继电器曲线建模及其在实际工业电力系统中的应用","authors":"A. Tjahjono, D. O. Anggriawan, A. Priyadi, M. Pujiantara, M. Purnomo","doi":"10.1109/CIVEMSA.2015.7158610","DOIUrl":null,"url":null,"abstract":"Create an accurate model with over-current relays (OCRs) play an important role in the coordination of power system protection. Modeling of the OCR using methods like the direct data storage and software models gave only approximate models. Moreover, modeling based on mathematical models is not appropriate to deal with ill-defined and uncertain systems. Therefore, in this paper proposes modeling of OCRs using adaptive neuro fuzzy inference system (ANFIS). ANFIS is developed using different numbers and types of membership functions (MFs). Each MF is implemented using training and checking data. The load current and time of opening of the circuit breaker are used as input and output in the ANFIS training. ANFIS, which is developed in the OCR curve model using sample data from protection coordination, is implemented in Hess Indonesia Corporation. Different types of MFs are to obtain the optimal design of OCR curves. The result of ANFIS in the OCR curve modeling is accurate and encouraging; thus, the ANFIS model can be used in digital relays and applied successfully in the real systems. In all cases, ANFIS models using 30 Gbell-type MFs yields a very minimum average percentage error of 0.028419 %.","PeriodicalId":348918,"journal":{"name":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Overcurrent relay curve modeling and its application in the real industrial power systems using adaptive neuro fuzzy inference system\",\"authors\":\"A. Tjahjono, D. O. Anggriawan, A. Priyadi, M. Pujiantara, M. Purnomo\",\"doi\":\"10.1109/CIVEMSA.2015.7158610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Create an accurate model with over-current relays (OCRs) play an important role in the coordination of power system protection. Modeling of the OCR using methods like the direct data storage and software models gave only approximate models. Moreover, modeling based on mathematical models is not appropriate to deal with ill-defined and uncertain systems. Therefore, in this paper proposes modeling of OCRs using adaptive neuro fuzzy inference system (ANFIS). ANFIS is developed using different numbers and types of membership functions (MFs). Each MF is implemented using training and checking data. The load current and time of opening of the circuit breaker are used as input and output in the ANFIS training. ANFIS, which is developed in the OCR curve model using sample data from protection coordination, is implemented in Hess Indonesia Corporation. Different types of MFs are to obtain the optimal design of OCR curves. The result of ANFIS in the OCR curve modeling is accurate and encouraging; thus, the ANFIS model can be used in digital relays and applied successfully in the real systems. In all cases, ANFIS models using 30 Gbell-type MFs yields a very minimum average percentage error of 0.028419 %.\",\"PeriodicalId\":348918,\"journal\":{\"name\":\"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIVEMSA.2015.7158610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2015.7158610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

建立准确的过流继电器(ocr)模型对协调电力系统保护具有重要意义。使用直接数据存储和软件模型等方法对OCR进行建模只能得到近似模型。此外,基于数学模型的建模不适合处理定义不清和不确定的系统。因此,本文提出使用自适应神经模糊推理系统(ANFIS)对ocr进行建模。ANFIS是使用不同数量和类型的隶属函数(mf)开发的。每个MF都是使用训练和检查数据来实现的。在ANFIS训练中,以负载电流和断路器开断时间作为输入和输出。ANFIS是利用保护协调的样本数据在OCR曲线模型中开发的,并在Hess印度尼西亚公司实施。不同类型的mf是为了获得OCR曲线的最优设计。ANFIS在OCR曲线建模中的结果是准确和令人鼓舞的;因此,ANFIS模型可用于数字继电器,并成功地应用于实际系统。在所有情况下,使用30个gbell型mf的ANFIS模型产生0.028419%的最小平均百分比误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overcurrent relay curve modeling and its application in the real industrial power systems using adaptive neuro fuzzy inference system
Create an accurate model with over-current relays (OCRs) play an important role in the coordination of power system protection. Modeling of the OCR using methods like the direct data storage and software models gave only approximate models. Moreover, modeling based on mathematical models is not appropriate to deal with ill-defined and uncertain systems. Therefore, in this paper proposes modeling of OCRs using adaptive neuro fuzzy inference system (ANFIS). ANFIS is developed using different numbers and types of membership functions (MFs). Each MF is implemented using training and checking data. The load current and time of opening of the circuit breaker are used as input and output in the ANFIS training. ANFIS, which is developed in the OCR curve model using sample data from protection coordination, is implemented in Hess Indonesia Corporation. Different types of MFs are to obtain the optimal design of OCR curves. The result of ANFIS in the OCR curve modeling is accurate and encouraging; thus, the ANFIS model can be used in digital relays and applied successfully in the real systems. In all cases, ANFIS models using 30 Gbell-type MFs yields a very minimum average percentage error of 0.028419 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信