燃气轮机压缩系统的虚拟测试研究

N. Sayma
{"title":"燃气轮机压缩系统的虚拟测试研究","authors":"N. Sayma","doi":"10.59972/gxbuf1zn","DOIUrl":null,"url":null,"abstract":"Current trends in the computational fluid dynamics (CFD) analysis of gas turbine engines are in the direction of the so called “virtual testing”. Although this term is used nowadays loosely in the context of this application, the ultimate objective of virtual tests is to replace partly or fully rig and engine tests during the design and certification of engines. In the past few decades, significant developments have been achieved in the discretisation methods and the associated CFD algorithms. Combined with the rapid developments in hardware in both speed and memory which are becoming increasingly available at affordable prices, the simulation of full engine or rig tests are increasingly becoming a reality. This paper describes a method by which virtual tests can be conducted on a low pressure compression system of a gas turbine engine using smart boundary conditions and allowing the sweep along a speed characteristic or sweep along a working line during the mapping of the compressor characteristic in a similar fashion to a typical rig test. The low pressure compression system is equipped with a variable downstream nozzle and the rotational speed is allowed to vary during the computations. The simulations are validated using NASA rotor 67 experimental data against which good agreement was obtained.","PeriodicalId":183819,"journal":{"name":"NAFEMS International Journal of CFD Case Studies","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Towards Virtual Testing of Compression Systems in Gas Turbine Engines\",\"authors\":\"N. Sayma\",\"doi\":\"10.59972/gxbuf1zn\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current trends in the computational fluid dynamics (CFD) analysis of gas turbine engines are in the direction of the so called “virtual testing”. Although this term is used nowadays loosely in the context of this application, the ultimate objective of virtual tests is to replace partly or fully rig and engine tests during the design and certification of engines. In the past few decades, significant developments have been achieved in the discretisation methods and the associated CFD algorithms. Combined with the rapid developments in hardware in both speed and memory which are becoming increasingly available at affordable prices, the simulation of full engine or rig tests are increasingly becoming a reality. This paper describes a method by which virtual tests can be conducted on a low pressure compression system of a gas turbine engine using smart boundary conditions and allowing the sweep along a speed characteristic or sweep along a working line during the mapping of the compressor characteristic in a similar fashion to a typical rig test. The low pressure compression system is equipped with a variable downstream nozzle and the rotational speed is allowed to vary during the computations. The simulations are validated using NASA rotor 67 experimental data against which good agreement was obtained.\",\"PeriodicalId\":183819,\"journal\":{\"name\":\"NAFEMS International Journal of CFD Case Studies\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAFEMS International Journal of CFD Case Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59972/gxbuf1zn\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFEMS International Journal of CFD Case Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59972/gxbuf1zn","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

当前燃气轮机计算流体力学(CFD)分析的发展趋势是“虚拟试验”。虽然这个术语现在在这个应用的上下文中使用得很松散,但虚拟测试的最终目标是在发动机的设计和认证期间部分或全部取代钻机和发动机测试。在过去的几十年里,离散化方法和相关的CFD算法取得了重大进展。随着硬件在速度和内存方面的快速发展,它们越来越多地以可承受的价格提供,全引擎或钻机测试的模拟越来越成为现实。本文描述了一种利用智能边界条件对燃气涡轮发动机低压压缩系统进行虚拟测试的方法,该方法允许在绘制压气机特性时沿速度特性或沿工作线进行扫描,其方式与典型的钻机测试类似。低压压缩系统配有可变下游喷嘴,在计算过程中允许转速变化。仿真结果与NASA旋翼67实验数据吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Virtual Testing of Compression Systems in Gas Turbine Engines
Current trends in the computational fluid dynamics (CFD) analysis of gas turbine engines are in the direction of the so called “virtual testing”. Although this term is used nowadays loosely in the context of this application, the ultimate objective of virtual tests is to replace partly or fully rig and engine tests during the design and certification of engines. In the past few decades, significant developments have been achieved in the discretisation methods and the associated CFD algorithms. Combined with the rapid developments in hardware in both speed and memory which are becoming increasingly available at affordable prices, the simulation of full engine or rig tests are increasingly becoming a reality. This paper describes a method by which virtual tests can be conducted on a low pressure compression system of a gas turbine engine using smart boundary conditions and allowing the sweep along a speed characteristic or sweep along a working line during the mapping of the compressor characteristic in a similar fashion to a typical rig test. The low pressure compression system is equipped with a variable downstream nozzle and the rotational speed is allowed to vary during the computations. The simulations are validated using NASA rotor 67 experimental data against which good agreement was obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信