使用击键动力学的移动用户身份验证

Daria Frolova, A. Epishkina, K. Kogos
{"title":"使用击键动力学的移动用户身份验证","authors":"Daria Frolova, A. Epishkina, K. Kogos","doi":"10.1109/EISIC49498.2019.9108890","DOIUrl":null,"url":null,"abstract":"Behavioral biometrics identifies individuals according to their unique way of interacting with computer devices. Keystroke dynamics can be used to identify people, and it can replace the second factor in two-factor authentication. This paper presents a keystroke dynamics biometric system for user authentication in mobile devices. We propose to use data from sensors of motion and position as features for the biometric system to improve the quality of user recognition. The proposed novel model combines different anomaly detection methods (distance-based and density-based) in an ensemble. We achieved the average EER of 8.0%. Our model has a retraining module that updates the keystroke dynamics template of a user each time after a successful authentication in the system. All the process of training and retraining a model and making a decision is made directly on a mobile device using our mobile application, as well as keystroke data is stored on a device.","PeriodicalId":117256,"journal":{"name":"2019 European Intelligence and Security Informatics Conference (EISIC)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mobile User Authentication Using Keystroke Dynamics\",\"authors\":\"Daria Frolova, A. Epishkina, K. Kogos\",\"doi\":\"10.1109/EISIC49498.2019.9108890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Behavioral biometrics identifies individuals according to their unique way of interacting with computer devices. Keystroke dynamics can be used to identify people, and it can replace the second factor in two-factor authentication. This paper presents a keystroke dynamics biometric system for user authentication in mobile devices. We propose to use data from sensors of motion and position as features for the biometric system to improve the quality of user recognition. The proposed novel model combines different anomaly detection methods (distance-based and density-based) in an ensemble. We achieved the average EER of 8.0%. Our model has a retraining module that updates the keystroke dynamics template of a user each time after a successful authentication in the system. All the process of training and retraining a model and making a decision is made directly on a mobile device using our mobile application, as well as keystroke data is stored on a device.\",\"PeriodicalId\":117256,\"journal\":{\"name\":\"2019 European Intelligence and Security Informatics Conference (EISIC)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 European Intelligence and Security Informatics Conference (EISIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EISIC49498.2019.9108890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Intelligence and Security Informatics Conference (EISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EISIC49498.2019.9108890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

行为生物计量学根据个人与计算机设备交互的独特方式来识别个人。击键动力学可以用来识别人,它可以取代双因素身份验证中的第二个因素。提出了一种用于移动设备用户认证的按键动力学生物识别系统。我们建议使用来自运动和位置传感器的数据作为生物识别系统的特征,以提高用户识别的质量。提出的新模型结合了不同的异常检测方法(基于距离和基于密度)在一个集成中。我们实现了8.0%的平均EER。我们的模型有一个再训练模块,每次在系统中成功认证后更新用户的击键动力学模板。所有训练和再训练模型以及做出决定的过程都是使用我们的移动应用程序直接在移动设备上完成的,击键数据也存储在设备上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mobile User Authentication Using Keystroke Dynamics
Behavioral biometrics identifies individuals according to their unique way of interacting with computer devices. Keystroke dynamics can be used to identify people, and it can replace the second factor in two-factor authentication. This paper presents a keystroke dynamics biometric system for user authentication in mobile devices. We propose to use data from sensors of motion and position as features for the biometric system to improve the quality of user recognition. The proposed novel model combines different anomaly detection methods (distance-based and density-based) in an ensemble. We achieved the average EER of 8.0%. Our model has a retraining module that updates the keystroke dynamics template of a user each time after a successful authentication in the system. All the process of training and retraining a model and making a decision is made directly on a mobile device using our mobile application, as well as keystroke data is stored on a device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信