使用InceptionResnetV2架构的巴厘岛雕刻饰品分类

M. W. A. Kesiman, K. T. Dermawan, I. G. M. Darmawiguna
{"title":"使用InceptionResnetV2架构的巴厘岛雕刻饰品分类","authors":"M. W. A. Kesiman, K. T. Dermawan, I. G. M. Darmawiguna","doi":"10.1109/CENIM56801.2022.10037265","DOIUrl":null,"url":null,"abstract":"All types of Balinese carving ornaments have special categories and names, but not many people know and understand them. This research conducts a study to build a classification system and automatic identification of types of Balinese carving ornaments based on digital images using deep learning-based methods, namely InceptionResnetV2 architecture. This architecture is tested as a comparison with the previous reported research results using feature extraction-based methods and with classifiers based on neural networks and multilayer perceptrons. The experimental results show that the best accuracy values obtained using the InceptionResnetV2 architecture is 76.66%. This result will be very useful for the development of further methods and systems.","PeriodicalId":118934,"journal":{"name":"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Balinese Carving Ornaments Classification Using InceptionResnetV2 Architecture\",\"authors\":\"M. W. A. Kesiman, K. T. Dermawan, I. G. M. Darmawiguna\",\"doi\":\"10.1109/CENIM56801.2022.10037265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All types of Balinese carving ornaments have special categories and names, but not many people know and understand them. This research conducts a study to build a classification system and automatic identification of types of Balinese carving ornaments based on digital images using deep learning-based methods, namely InceptionResnetV2 architecture. This architecture is tested as a comparison with the previous reported research results using feature extraction-based methods and with classifiers based on neural networks and multilayer perceptrons. The experimental results show that the best accuracy values obtained using the InceptionResnetV2 architecture is 76.66%. This result will be very useful for the development of further methods and systems.\",\"PeriodicalId\":118934,\"journal\":{\"name\":\"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CENIM56801.2022.10037265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CENIM56801.2022.10037265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

各种类型的巴厘雕刻摆件都有特殊的类别和名称,但知道和了解的人并不多。本研究采用基于深度学习的方法,即InceptionResnetV2架构,构建基于数字图像的巴厘雕刻饰品分类系统和类型自动识别。该架构与先前报道的基于特征提取的方法以及基于神经网络和多层感知器的分类器的研究结果进行了比较。实验结果表明,使用InceptionResnetV2架构获得的最佳准确率值为76.66%。这一结果将对进一步的方法和系统的开发非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Balinese Carving Ornaments Classification Using InceptionResnetV2 Architecture
All types of Balinese carving ornaments have special categories and names, but not many people know and understand them. This research conducts a study to build a classification system and automatic identification of types of Balinese carving ornaments based on digital images using deep learning-based methods, namely InceptionResnetV2 architecture. This architecture is tested as a comparison with the previous reported research results using feature extraction-based methods and with classifiers based on neural networks and multilayer perceptrons. The experimental results show that the best accuracy values obtained using the InceptionResnetV2 architecture is 76.66%. This result will be very useful for the development of further methods and systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信