{"title":"拖","authors":"M. Edward, Stephen Farrier","doi":"10.5040/9781350082977.ch-001","DOIUrl":null,"url":null,"abstract":"Compressibility drag is the increment in drag associated with increases in Mach number from some reference condition. Generally, the reference condition is taken to be M = 0.5 since the effects of compressibility are known to be small here at typical conditions. Thus, compressibility drag contains a component at zero-lift and a lift-dependent component but includes only the increments due to Mach number (CL and Re are assumed to be constant.)","PeriodicalId":199165,"journal":{"name":"Contemporary Drag Practices and Performers","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Drag\",\"authors\":\"M. Edward, Stephen Farrier\",\"doi\":\"10.5040/9781350082977.ch-001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressibility drag is the increment in drag associated with increases in Mach number from some reference condition. Generally, the reference condition is taken to be M = 0.5 since the effects of compressibility are known to be small here at typical conditions. Thus, compressibility drag contains a component at zero-lift and a lift-dependent component but includes only the increments due to Mach number (CL and Re are assumed to be constant.)\",\"PeriodicalId\":199165,\"journal\":{\"name\":\"Contemporary Drag Practices and Performers\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Drag Practices and Performers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5040/9781350082977.ch-001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Drag Practices and Performers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5040/9781350082977.ch-001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compressibility drag is the increment in drag associated with increases in Mach number from some reference condition. Generally, the reference condition is taken to be M = 0.5 since the effects of compressibility are known to be small here at typical conditions. Thus, compressibility drag contains a component at zero-lift and a lift-dependent component but includes only the increments due to Mach number (CL and Re are assumed to be constant.)