利用随机森林回归提高喷墨打印核心车身WRAP温度传感器的精度

Md Juber Rahman, B. Morshed
{"title":"利用随机森林回归提高喷墨打印核心车身WRAP温度传感器的精度","authors":"Md Juber Rahman, B. Morshed","doi":"10.23919/USNC-URSI-NRSM.2019.8712966","DOIUrl":null,"url":null,"abstract":"Inkjet printing (IJP) technology holds tremendous promise for the development of low cost, environment friendly and body-worn biomedical sensors. In this study, we have investigated the integration of a flexible body-worn disposable IJP Wireless Resistive Analog Passive (WRAP) temperature sensor with an android app for real-time monitoring of core body temperature with high accuracy using features extracted from the sensor response. Random Forest has been used for feature selection and regression. With 5-fold cross validation we have achieved an RMSE = 0.98, R-squared value = 0.99, and mean absolute error, MAE = 0.59 for temperature estimation. The model is applicable for the development of IJP body-worn sensors for various other physiological sensing e.g. breathing, heart rate.","PeriodicalId":142320,"journal":{"name":"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Improving Accuracy of Inkjet Printed Core Body WRAP Temperature Sensor Using Random Forest Regression Implemented with an Android App\",\"authors\":\"Md Juber Rahman, B. Morshed\",\"doi\":\"10.23919/USNC-URSI-NRSM.2019.8712966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inkjet printing (IJP) technology holds tremendous promise for the development of low cost, environment friendly and body-worn biomedical sensors. In this study, we have investigated the integration of a flexible body-worn disposable IJP Wireless Resistive Analog Passive (WRAP) temperature sensor with an android app for real-time monitoring of core body temperature with high accuracy using features extracted from the sensor response. Random Forest has been used for feature selection and regression. With 5-fold cross validation we have achieved an RMSE = 0.98, R-squared value = 0.99, and mean absolute error, MAE = 0.59 for temperature estimation. The model is applicable for the development of IJP body-worn sensors for various other physiological sensing e.g. breathing, heart rate.\",\"PeriodicalId\":142320,\"journal\":{\"name\":\"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/USNC-URSI-NRSM.2019.8712966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC-URSI-NRSM.2019.8712966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

喷墨打印技术为开发低成本、环保、可穿戴的生物医学传感器提供了巨大的前景。在这项研究中,我们研究了一种柔性的可穿戴的一次性IJP无线电阻模拟无源(WRAP)温度传感器与一个android应用程序的集成,该应用程序利用从传感器响应中提取的特征,高精度地实时监测核心体温。随机森林被用于特征选择和回归。通过5倍交叉验证,我们获得了RMSE = 0.98, r平方值= 0.99,平均绝对误差MAE = 0.59的温度估计。该模型适用于开发用于呼吸、心率等各种生理传感的IJP穿戴式传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Accuracy of Inkjet Printed Core Body WRAP Temperature Sensor Using Random Forest Regression Implemented with an Android App
Inkjet printing (IJP) technology holds tremendous promise for the development of low cost, environment friendly and body-worn biomedical sensors. In this study, we have investigated the integration of a flexible body-worn disposable IJP Wireless Resistive Analog Passive (WRAP) temperature sensor with an android app for real-time monitoring of core body temperature with high accuracy using features extracted from the sensor response. Random Forest has been used for feature selection and regression. With 5-fold cross validation we have achieved an RMSE = 0.98, R-squared value = 0.99, and mean absolute error, MAE = 0.59 for temperature estimation. The model is applicable for the development of IJP body-worn sensors for various other physiological sensing e.g. breathing, heart rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信