O(log n) RMR中的群互斥

V. Bhatt, Chien-Chung Huang
{"title":"O(log n) RMR中的群互斥","authors":"V. Bhatt, Chien-Chung Huang","doi":"10.1145/1835698.1835708","DOIUrl":null,"url":null,"abstract":"We present an algorithm to solve the group mutual exclusion, problem in the cache-coherent (CC) model. For the same problem in the distributed shared memory (DSM) model, Danek and Hadzilacos presented algorithms of O(n) remote memory references (RMR) and proved a matching lower bound, where n is the number of processes. We show that in the CC model, using registers and LL/SC variables, our algorithm achieves O(min(log n,k)) RMR, where k is the point contention, which is so far the best. Moreover, given a recent result of Attiya, Hendler and Woelfel showing that exclusion problems have a Ω(log n) RME lower bound using registers, comparison primitives and LL/SC variables, our algorithm thus achieves the best theoretical bound.","PeriodicalId":447863,"journal":{"name":"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Group mutual exclusion in O(log n) RMR\",\"authors\":\"V. Bhatt, Chien-Chung Huang\",\"doi\":\"10.1145/1835698.1835708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm to solve the group mutual exclusion, problem in the cache-coherent (CC) model. For the same problem in the distributed shared memory (DSM) model, Danek and Hadzilacos presented algorithms of O(n) remote memory references (RMR) and proved a matching lower bound, where n is the number of processes. We show that in the CC model, using registers and LL/SC variables, our algorithm achieves O(min(log n,k)) RMR, where k is the point contention, which is so far the best. Moreover, given a recent result of Attiya, Hendler and Woelfel showing that exclusion problems have a Ω(log n) RME lower bound using registers, comparison primitives and LL/SC variables, our algorithm thus achieves the best theoretical bound.\",\"PeriodicalId\":447863,\"journal\":{\"name\":\"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1835698.1835708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835698.1835708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

提出了一种解决缓存-相干(CC)模型中组互斥问题的算法。对于分布式共享内存(DSM)模型中的相同问题,Danek和Hadzilacos提出了O(n)个远程内存引用(RMR)的算法,并证明了一个匹配的下界,其中n为进程数。我们表明,在CC模型中,使用寄存器和LL/SC变量,我们的算法实现了O(min(log n,k)) RMR,其中k是点争用,这是迄今为止最好的。此外,鉴于Attiya, Hendler和Woelfel最近的结果表明,使用寄存器,比较原语和LL/SC变量,排除问题具有Ω(log n) RME下界,因此我们的算法实现了最佳理论界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group mutual exclusion in O(log n) RMR
We present an algorithm to solve the group mutual exclusion, problem in the cache-coherent (CC) model. For the same problem in the distributed shared memory (DSM) model, Danek and Hadzilacos presented algorithms of O(n) remote memory references (RMR) and proved a matching lower bound, where n is the number of processes. We show that in the CC model, using registers and LL/SC variables, our algorithm achieves O(min(log n,k)) RMR, where k is the point contention, which is so far the best. Moreover, given a recent result of Attiya, Hendler and Woelfel showing that exclusion problems have a Ω(log n) RME lower bound using registers, comparison primitives and LL/SC variables, our algorithm thus achieves the best theoretical bound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信