{"title":"两域交集的改进生成对抗网络","authors":"Monthol Charattrakool, Jittat Fakcharoenphol","doi":"10.1109/jcsse54890.2022.9836273","DOIUrl":null,"url":null,"abstract":"The goal of generative models is to capture domain distribution based on training samples. Generative Adversarial Networks (or GANs) are a successful framework for training a generative model. In this paper, we consider a process for training generative models using GAN when the target domain is an intersection of two target domains. When two target domains only share a small intersection domain, we have identified an issue referred to as canceling gradients, caused by unintended optimization of learning loss. We propose a simple method based on gradient scaling and perform experiments to verify our remedy.","PeriodicalId":284735,"journal":{"name":"2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"359 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Generative Adversarial Networks for Intersection of Two Domains\",\"authors\":\"Monthol Charattrakool, Jittat Fakcharoenphol\",\"doi\":\"10.1109/jcsse54890.2022.9836273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of generative models is to capture domain distribution based on training samples. Generative Adversarial Networks (or GANs) are a successful framework for training a generative model. In this paper, we consider a process for training generative models using GAN when the target domain is an intersection of two target domains. When two target domains only share a small intersection domain, we have identified an issue referred to as canceling gradients, caused by unintended optimization of learning loss. We propose a simple method based on gradient scaling and perform experiments to verify our remedy.\",\"PeriodicalId\":284735,\"journal\":{\"name\":\"2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"359 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/jcsse54890.2022.9836273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/jcsse54890.2022.9836273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved Generative Adversarial Networks for Intersection of Two Domains
The goal of generative models is to capture domain distribution based on training samples. Generative Adversarial Networks (or GANs) are a successful framework for training a generative model. In this paper, we consider a process for training generative models using GAN when the target domain is an intersection of two target domains. When two target domains only share a small intersection domain, we have identified an issue referred to as canceling gradients, caused by unintended optimization of learning loss. We propose a simple method based on gradient scaling and perform experiments to verify our remedy.