基于粒子群算法的图像去噪小波阈值优化

Xuejie Wang, Yi Liu, Yanjun Li
{"title":"基于粒子群算法的图像去噪小波阈值优化","authors":"Xuejie Wang, Yi Liu, Yanjun Li","doi":"10.1109/ISCID.2011.95","DOIUrl":null,"url":null,"abstract":"Threshold selection is extremely important in wavelet transform for image denoising. The threshold selection problem can be viewed as continuous optimization problem. Recently, Particle Swarm Optimization was introduced to solve this problem, but its effectiveness is destroyed by the premature convergence. In order to overcome this drawback and obtain satisfactory effect, this paper proposes a modified chaos Particle Swarm Optimization algorithm for threshold selection, then adopts the optimal threshold achieved and a non-negative garrote function to process wavelet decomposed coefficients. When the premature convergence occurs, chaos search strategy will come into effect to help particles jump out of local optimization, and seek global optimization. Experimental results reveal the encouraging effectiveness of the proposed algorithm.","PeriodicalId":224504,"journal":{"name":"2011 Fourth International Symposium on Computational Intelligence and Design","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Novel Wavelet Threshold Optimization Via PSO for Image Denoising\",\"authors\":\"Xuejie Wang, Yi Liu, Yanjun Li\",\"doi\":\"10.1109/ISCID.2011.95\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Threshold selection is extremely important in wavelet transform for image denoising. The threshold selection problem can be viewed as continuous optimization problem. Recently, Particle Swarm Optimization was introduced to solve this problem, but its effectiveness is destroyed by the premature convergence. In order to overcome this drawback and obtain satisfactory effect, this paper proposes a modified chaos Particle Swarm Optimization algorithm for threshold selection, then adopts the optimal threshold achieved and a non-negative garrote function to process wavelet decomposed coefficients. When the premature convergence occurs, chaos search strategy will come into effect to help particles jump out of local optimization, and seek global optimization. Experimental results reveal the encouraging effectiveness of the proposed algorithm.\",\"PeriodicalId\":224504,\"journal\":{\"name\":\"2011 Fourth International Symposium on Computational Intelligence and Design\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2011.95\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2011.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在小波变换图像去噪中,阈值选择是一个非常重要的问题。阈值选择问题可以看作是连续优化问题。近年来,粒子群算法被引入到这一问题的求解中,但其过早收敛性破坏了算法的有效性。为了克服这一缺点并获得满意的效果,本文提出了一种改进的混沌粒子群算法进行阈值选择,然后采用得到的最优阈值和非负garrote函数对小波分解系数进行处理。当早熟收敛发生时,混沌搜索策略将发挥作用,帮助粒子跳出局部优化,寻求全局优化。实验结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Wavelet Threshold Optimization Via PSO for Image Denoising
Threshold selection is extremely important in wavelet transform for image denoising. The threshold selection problem can be viewed as continuous optimization problem. Recently, Particle Swarm Optimization was introduced to solve this problem, but its effectiveness is destroyed by the premature convergence. In order to overcome this drawback and obtain satisfactory effect, this paper proposes a modified chaos Particle Swarm Optimization algorithm for threshold selection, then adopts the optimal threshold achieved and a non-negative garrote function to process wavelet decomposed coefficients. When the premature convergence occurs, chaos search strategy will come into effect to help particles jump out of local optimization, and seek global optimization. Experimental results reveal the encouraging effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信