{"title":"基于精度的定宽乘数器的数据缩放设计","authors":"P. Nandha Kumar","doi":"10.51983/ajes-2022.11.2.3524","DOIUrl":null,"url":null,"abstract":"Multipliers are the basic building blocks in various digital signal processing applications such as convolution, correlation, and filters. However, conventional array multipliers, vedic multipliers were resulted in higher area, power, delay consumptions. Therefore, this work is focused on design and implementation of variable width Radix-4 booth multiplier using Data Scaling Technology (DST). The radix-4 modified booth encoding was used in the production of these incomplete items. In accumulation, the bits of the fractional products are added in a parallel manner with decreased stages using a multi-stage carry propagation adder (MSCPA). The simulation demonstrated that the suggested DST-Radix-4 booth multiplier (DST-R4BM) resulted in higher performance in comparison to traditional multiplies in terms of area, delay, and power.","PeriodicalId":365290,"journal":{"name":"Asian Journal of Electrical Sciences","volume":"10 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Accuracy Based Fixed-Width Booth Multipliers Using Data Scaling Technology\",\"authors\":\"P. Nandha Kumar\",\"doi\":\"10.51983/ajes-2022.11.2.3524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multipliers are the basic building blocks in various digital signal processing applications such as convolution, correlation, and filters. However, conventional array multipliers, vedic multipliers were resulted in higher area, power, delay consumptions. Therefore, this work is focused on design and implementation of variable width Radix-4 booth multiplier using Data Scaling Technology (DST). The radix-4 modified booth encoding was used in the production of these incomplete items. In accumulation, the bits of the fractional products are added in a parallel manner with decreased stages using a multi-stage carry propagation adder (MSCPA). The simulation demonstrated that the suggested DST-Radix-4 booth multiplier (DST-R4BM) resulted in higher performance in comparison to traditional multiplies in terms of area, delay, and power.\",\"PeriodicalId\":365290,\"journal\":{\"name\":\"Asian Journal of Electrical Sciences\",\"volume\":\"10 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Electrical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51983/ajes-2022.11.2.3524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Electrical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51983/ajes-2022.11.2.3524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of Accuracy Based Fixed-Width Booth Multipliers Using Data Scaling Technology
Multipliers are the basic building blocks in various digital signal processing applications such as convolution, correlation, and filters. However, conventional array multipliers, vedic multipliers were resulted in higher area, power, delay consumptions. Therefore, this work is focused on design and implementation of variable width Radix-4 booth multiplier using Data Scaling Technology (DST). The radix-4 modified booth encoding was used in the production of these incomplete items. In accumulation, the bits of the fractional products are added in a parallel manner with decreased stages using a multi-stage carry propagation adder (MSCPA). The simulation demonstrated that the suggested DST-Radix-4 booth multiplier (DST-R4BM) resulted in higher performance in comparison to traditional multiplies in terms of area, delay, and power.