一个有效的检测Android恶意软件的在线方案

Shuang Liang, Xiaojiang Du, C. C. Tan, Wei Yu
{"title":"一个有效的检测Android恶意软件的在线方案","authors":"Shuang Liang, Xiaojiang Du, C. C. Tan, Wei Yu","doi":"10.1109/ICCCN.2014.6911740","DOIUrl":null,"url":null,"abstract":"The growing popularity of Android-based smart-phones have led to the rise of Android based malware. In particular, profit-motivated malware is becoming increasingly popular in Android malware distribution. These malware typically profit by sending premium-rate SMS messages and/or make premium-rate phone calls from infected devices without user consent. In this paper, we investigate the telephony framework of the Android operating system and propose a novel process user-identification (UID) based online detection scheme. Our scheme can effectively detect premium-rate and background SMS messages as well as premium-rate phone calls initiated by malware. We implemented our detection system on a Samsung Google Nexus 4 running Android Jelly Bean and tested the effectiveness of detecting real malware from Android markets. The experimental results show that our scheme is efficient and effective in detecting background messages and premium-rate messages and phone calls. Our scheme can detect and block all the background and premium-rate SMS messages and phone calls initiated by popular malware.","PeriodicalId":404048,"journal":{"name":"2014 23rd International Conference on Computer Communication and Networks (ICCCN)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An effective online scheme for detecting Android malware\",\"authors\":\"Shuang Liang, Xiaojiang Du, C. C. Tan, Wei Yu\",\"doi\":\"10.1109/ICCCN.2014.6911740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing popularity of Android-based smart-phones have led to the rise of Android based malware. In particular, profit-motivated malware is becoming increasingly popular in Android malware distribution. These malware typically profit by sending premium-rate SMS messages and/or make premium-rate phone calls from infected devices without user consent. In this paper, we investigate the telephony framework of the Android operating system and propose a novel process user-identification (UID) based online detection scheme. Our scheme can effectively detect premium-rate and background SMS messages as well as premium-rate phone calls initiated by malware. We implemented our detection system on a Samsung Google Nexus 4 running Android Jelly Bean and tested the effectiveness of detecting real malware from Android markets. The experimental results show that our scheme is efficient and effective in detecting background messages and premium-rate messages and phone calls. Our scheme can detect and block all the background and premium-rate SMS messages and phone calls initiated by popular malware.\",\"PeriodicalId\":404048,\"journal\":{\"name\":\"2014 23rd International Conference on Computer Communication and Networks (ICCCN)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 23rd International Conference on Computer Communication and Networks (ICCCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCN.2014.6911740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 23rd International Conference on Computer Communication and Networks (ICCCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCN.2014.6911740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于Android的智能手机的日益普及导致了基于Android的恶意软件的兴起。特别是,以盈利为目的的恶意软件在Android恶意软件分发中变得越来越流行。这些恶意软件通常在未经用户同意的情况下通过发送收费短信和/或从受感染的设备拨打收费电话来获利。本文研究了Android操作系统的电话框架,提出了一种新的基于进程用户识别(UID)的在线检测方案。我们的方案可以有效地检测出由恶意软件发起的资费短信和后台短信以及资费电话。我们在运行Android Jelly Bean的三星谷歌Nexus 4上执行了检测系统,并测试了检测来自Android市场的真正恶意软件的有效性。实验结果表明,该方法在检测后台消息、加价消息和电话呼叫方面是有效的。我们的方案可以检测和阻止所有后台和资费短信和电话发起的流行的恶意软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An effective online scheme for detecting Android malware
The growing popularity of Android-based smart-phones have led to the rise of Android based malware. In particular, profit-motivated malware is becoming increasingly popular in Android malware distribution. These malware typically profit by sending premium-rate SMS messages and/or make premium-rate phone calls from infected devices without user consent. In this paper, we investigate the telephony framework of the Android operating system and propose a novel process user-identification (UID) based online detection scheme. Our scheme can effectively detect premium-rate and background SMS messages as well as premium-rate phone calls initiated by malware. We implemented our detection system on a Samsung Google Nexus 4 running Android Jelly Bean and tested the effectiveness of detecting real malware from Android markets. The experimental results show that our scheme is efficient and effective in detecting background messages and premium-rate messages and phone calls. Our scheme can detect and block all the background and premium-rate SMS messages and phone calls initiated by popular malware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信