LP-HPA:负载预测-水平Pod自动缩放容器弹性缩放

Yifei Xu, Kai Qiao, Chaoyong Wang, Li Zhu
{"title":"LP-HPA:负载预测-水平Pod自动缩放容器弹性缩放","authors":"Yifei Xu, Kai Qiao, Chaoyong Wang, Li Zhu","doi":"10.1145/3569966.3570115","DOIUrl":null,"url":null,"abstract":"In the cloud environment, application elastic scaling is very important. The number of copies can be dynamically adjusted according to load. A good elastic scaling scheme can not only ensure the stability of application, but also improve resource utilization of platform. The existing responsive scaling strategy of Kubernetes platform has many problems, which can not meet requirements of web system for service quality. This paper optimizes the default elastic scaling scheme in Kubernetes cluster, and proposes a container dynamic scaling scheme LP-HPA (load predict horizon pod autoscaling) based on load prediction. This scheme uses LSTM-GRU model to predict the application load, comprehensively considers predicted data and current data, realizes dynamic scaling of container, and ensures the service quality of application. Finally, by building Kubernetes cluster, this paper uses open source data set to verify the LP-HPA scheme. Experimental results show that our proposed scheme is better than Kubernetes' default scaling scheme in three scenarios: load rise, load drop and load jitter.","PeriodicalId":145580,"journal":{"name":"Proceedings of the 5th International Conference on Computer Science and Software Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LP-HPA:Load Predict-Horizontal Pod Autoscaler for Container Elastic Scaling\",\"authors\":\"Yifei Xu, Kai Qiao, Chaoyong Wang, Li Zhu\",\"doi\":\"10.1145/3569966.3570115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the cloud environment, application elastic scaling is very important. The number of copies can be dynamically adjusted according to load. A good elastic scaling scheme can not only ensure the stability of application, but also improve resource utilization of platform. The existing responsive scaling strategy of Kubernetes platform has many problems, which can not meet requirements of web system for service quality. This paper optimizes the default elastic scaling scheme in Kubernetes cluster, and proposes a container dynamic scaling scheme LP-HPA (load predict horizon pod autoscaling) based on load prediction. This scheme uses LSTM-GRU model to predict the application load, comprehensively considers predicted data and current data, realizes dynamic scaling of container, and ensures the service quality of application. Finally, by building Kubernetes cluster, this paper uses open source data set to verify the LP-HPA scheme. Experimental results show that our proposed scheme is better than Kubernetes' default scaling scheme in three scenarios: load rise, load drop and load jitter.\",\"PeriodicalId\":145580,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Computer Science and Software Engineering\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Computer Science and Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3569966.3570115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Computer Science and Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569966.3570115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在云环境中,应用程序的弹性扩展非常重要。副本数量可以根据负载动态调整。良好的弹性缩放方案不仅可以保证应用的稳定性,还可以提高平台的资源利用率。现有的Kubernetes平台响应式扩展策略存在许多问题,不能满足web系统对服务质量的要求。本文对Kubernetes集群默认弹性扩展方案进行了优化,提出了一种基于负载预测的容器动态扩展方案LP-HPA (load prediction horizon pod autoscaling)。该方案采用LSTM-GRU模型预测应用负载,综合考虑预测数据和当前数据,实现容器的动态扩展,保证应用的服务质量。最后,通过构建Kubernetes集群,利用开源数据集对LP-HPA方案进行验证。实验结果表明,本文提出的方案在负载上升、负载下降和负载抖动三种场景下都优于Kubernetes的默认扩展方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LP-HPA:Load Predict-Horizontal Pod Autoscaler for Container Elastic Scaling
In the cloud environment, application elastic scaling is very important. The number of copies can be dynamically adjusted according to load. A good elastic scaling scheme can not only ensure the stability of application, but also improve resource utilization of platform. The existing responsive scaling strategy of Kubernetes platform has many problems, which can not meet requirements of web system for service quality. This paper optimizes the default elastic scaling scheme in Kubernetes cluster, and proposes a container dynamic scaling scheme LP-HPA (load predict horizon pod autoscaling) based on load prediction. This scheme uses LSTM-GRU model to predict the application load, comprehensively considers predicted data and current data, realizes dynamic scaling of container, and ensures the service quality of application. Finally, by building Kubernetes cluster, this paper uses open source data set to verify the LP-HPA scheme. Experimental results show that our proposed scheme is better than Kubernetes' default scaling scheme in three scenarios: load rise, load drop and load jitter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信