气门粘滞建模的神经网络模型结构优化

H. Zabiri, N. Mazuki
{"title":"气门粘滞建模的神经网络模型结构优化","authors":"H. Zabiri, N. Mazuki","doi":"10.1109/ICSAP.2009.42","DOIUrl":null,"url":null,"abstract":"Stiction is the most commonly found valve problem in the process industry. Valve stiction may cause oscillations in control loops which increases variability in product quality, accelerates equipment wear and tear, or leads to system instability. To help understand and study the behavior of sticky valve, several valve stiction models have been proposed in the literature. In this paper, a black box Neural Network-based modeling approach is proposed to model valve stiction. It is shown that with optimum model structures, performance of the developed NN stiction model is comparable to other established method.","PeriodicalId":176934,"journal":{"name":"2009 International Conference on Signal Acquisition and Processing","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Neural Network Model Structures for Valve Stiction Modeling\",\"authors\":\"H. Zabiri, N. Mazuki\",\"doi\":\"10.1109/ICSAP.2009.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stiction is the most commonly found valve problem in the process industry. Valve stiction may cause oscillations in control loops which increases variability in product quality, accelerates equipment wear and tear, or leads to system instability. To help understand and study the behavior of sticky valve, several valve stiction models have been proposed in the literature. In this paper, a black box Neural Network-based modeling approach is proposed to model valve stiction. It is shown that with optimum model structures, performance of the developed NN stiction model is comparable to other established method.\",\"PeriodicalId\":176934,\"journal\":{\"name\":\"2009 International Conference on Signal Acquisition and Processing\",\"volume\":\"181 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Signal Acquisition and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAP.2009.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Signal Acquisition and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAP.2009.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

粘滞是过程工业中最常见的阀门问题。阀门粘滞可能导致控制回路振荡,从而增加产品质量的可变性,加速设备磨损,或导致系统不稳定。为了帮助理解和研究粘滞阀的行为,文献中提出了几种阀的粘滞模型。本文提出了一种基于黑盒神经网络的阀门粘滞建模方法。结果表明,在优化模型结构的情况下,所建立的神经网络粘滞模型的性能与其他已建立的方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Neural Network Model Structures for Valve Stiction Modeling
Stiction is the most commonly found valve problem in the process industry. Valve stiction may cause oscillations in control loops which increases variability in product quality, accelerates equipment wear and tear, or leads to system instability. To help understand and study the behavior of sticky valve, several valve stiction models have been proposed in the literature. In this paper, a black box Neural Network-based modeling approach is proposed to model valve stiction. It is shown that with optimum model structures, performance of the developed NN stiction model is comparable to other established method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信