基于cnn学习的FPGA恶意比特流检测*

Jayeeta Chaudhuri, K. Chakrabarty
{"title":"基于cnn学习的FPGA恶意比特流检测*","authors":"Jayeeta Chaudhuri, K. Chakrabarty","doi":"10.1109/ETS54262.2022.9810438","DOIUrl":null,"url":null,"abstract":"Multi-tenant FPGAs are increasingly being used in cloud computing technologies. Users are able to access the FPGA fabric remotely to implement custom accelerators in the cloud. However, sharing FPGA resources by untrusted third-parties can lead to serious security threats. Attackers can configure a portion of the FPGA with a malicious bitstream. Such malicious use of the FPGA fabric may lead to severe voltage fluctuations and eventually crash the FPGA. Attackers can also use side-channel and fault attacks to extract secret information (e.g., secret key of an AES encryption module). We propose a convolutional neural network (CNN)-based defense mechanism to detect malicious circuits that are configured on an FPGA by learning features from the data-series representation of the bitstreams of malicious circuits. We use the classification accuracy, true-positive rate, and false-positive rate metrics to quantify the effectiveness of CNN-based classification of malicious bitstreams. Experimental results on Xilinx FPGAs demonstrate the effectiveness of the proposed method.","PeriodicalId":334931,"journal":{"name":"2022 IEEE European Test Symposium (ETS)","volume":"538 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Detection of Malicious FPGA Bitstreams using CNN-Based Learning*\",\"authors\":\"Jayeeta Chaudhuri, K. Chakrabarty\",\"doi\":\"10.1109/ETS54262.2022.9810438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-tenant FPGAs are increasingly being used in cloud computing technologies. Users are able to access the FPGA fabric remotely to implement custom accelerators in the cloud. However, sharing FPGA resources by untrusted third-parties can lead to serious security threats. Attackers can configure a portion of the FPGA with a malicious bitstream. Such malicious use of the FPGA fabric may lead to severe voltage fluctuations and eventually crash the FPGA. Attackers can also use side-channel and fault attacks to extract secret information (e.g., secret key of an AES encryption module). We propose a convolutional neural network (CNN)-based defense mechanism to detect malicious circuits that are configured on an FPGA by learning features from the data-series representation of the bitstreams of malicious circuits. We use the classification accuracy, true-positive rate, and false-positive rate metrics to quantify the effectiveness of CNN-based classification of malicious bitstreams. Experimental results on Xilinx FPGAs demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":334931,\"journal\":{\"name\":\"2022 IEEE European Test Symposium (ETS)\",\"volume\":\"538 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE European Test Symposium (ETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETS54262.2022.9810438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS54262.2022.9810438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

多租户fpga越来越多地用于云计算技术。用户可以远程访问FPGA结构,在云中实现自定义加速器。但是,不受信任的第三方共享FPGA资源会导致严重的安全威胁。攻击者可以用恶意比特流配置FPGA的一部分。这种恶意使用FPGA结构可能导致严重的电压波动,最终导致FPGA崩溃。攻击者还可以使用侧信道攻击和故障攻击来提取秘密信息(例如AES加密模块的秘密密钥)。我们提出了一种基于卷积神经网络(CNN)的防御机制,通过从恶意电路的比特流的数据序列表示中学习特征来检测FPGA上配置的恶意电路。我们使用分类准确率、真阳性率和假阳性率指标来量化基于cnn的恶意比特流分类的有效性。在Xilinx fpga上的实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Malicious FPGA Bitstreams using CNN-Based Learning*
Multi-tenant FPGAs are increasingly being used in cloud computing technologies. Users are able to access the FPGA fabric remotely to implement custom accelerators in the cloud. However, sharing FPGA resources by untrusted third-parties can lead to serious security threats. Attackers can configure a portion of the FPGA with a malicious bitstream. Such malicious use of the FPGA fabric may lead to severe voltage fluctuations and eventually crash the FPGA. Attackers can also use side-channel and fault attacks to extract secret information (e.g., secret key of an AES encryption module). We propose a convolutional neural network (CNN)-based defense mechanism to detect malicious circuits that are configured on an FPGA by learning features from the data-series representation of the bitstreams of malicious circuits. We use the classification accuracy, true-positive rate, and false-positive rate metrics to quantify the effectiveness of CNN-based classification of malicious bitstreams. Experimental results on Xilinx FPGAs demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信