{"title":"经过验证的程序与粘合剂","authors":"Martin Clochard, C. Marché, A. Paskevich","doi":"10.1145/2541568.2541571","DOIUrl":null,"url":null,"abstract":"Programs that treat datatypes with binders, such as theorem provers or higher-order compilers, are regularly used for mission-critical purposes, and must be both reliable and performant. Formally proving such programs using as much automation as possible is highly desirable. In this paper, we propose a generic approach to handle datatypes with binders both in the program and its specification in a way that facilitates automated reasoning about such datatypes and also leads to a reasonably efficient code. Our method is implemented in the Why3 environment for program verification. We validate it on the examples of a lambda-interpreter with several reduction strategies and a simple tableaux-based theorem prover.","PeriodicalId":153056,"journal":{"name":"Programming Languages meets Program Verification","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Verified programs with binders\",\"authors\":\"Martin Clochard, C. Marché, A. Paskevich\",\"doi\":\"10.1145/2541568.2541571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Programs that treat datatypes with binders, such as theorem provers or higher-order compilers, are regularly used for mission-critical purposes, and must be both reliable and performant. Formally proving such programs using as much automation as possible is highly desirable. In this paper, we propose a generic approach to handle datatypes with binders both in the program and its specification in a way that facilitates automated reasoning about such datatypes and also leads to a reasonably efficient code. Our method is implemented in the Why3 environment for program verification. We validate it on the examples of a lambda-interpreter with several reduction strategies and a simple tableaux-based theorem prover.\",\"PeriodicalId\":153056,\"journal\":{\"name\":\"Programming Languages meets Program Verification\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Programming Languages meets Program Verification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2541568.2541571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programming Languages meets Program Verification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2541568.2541571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Programs that treat datatypes with binders, such as theorem provers or higher-order compilers, are regularly used for mission-critical purposes, and must be both reliable and performant. Formally proving such programs using as much automation as possible is highly desirable. In this paper, we propose a generic approach to handle datatypes with binders both in the program and its specification in a way that facilitates automated reasoning about such datatypes and also leads to a reasonably efficient code. Our method is implemented in the Why3 environment for program verification. We validate it on the examples of a lambda-interpreter with several reduction strategies and a simple tableaux-based theorem prover.