判别等高图投影

Y. Zheng, Taiping Zhang, Bin Fang, Yuanyan Tang
{"title":"判别等高图投影","authors":"Y. Zheng, Taiping Zhang, Bin Fang, Yuanyan Tang","doi":"10.1109/ICWAPR.2009.5207418","DOIUrl":null,"url":null,"abstract":"In this paper we proposed a novel supervised dimensionality reduction method, named Discriminant Isometric projection. The aim is to compact the data points from the same cluster on high-dimension manifold to make them closer in the low-dimension space, and to make the ones from the different cluster further, which is beneficial to preserve the homogeneous characteristics for classification. We compared our method with other three methods for dimensionality reduction over the ORL face dataset and experiments show that Discriminant Isometric projection produces stable performance and good precision.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Discriminant Isomap projection\",\"authors\":\"Y. Zheng, Taiping Zhang, Bin Fang, Yuanyan Tang\",\"doi\":\"10.1109/ICWAPR.2009.5207418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we proposed a novel supervised dimensionality reduction method, named Discriminant Isometric projection. The aim is to compact the data points from the same cluster on high-dimension manifold to make them closer in the low-dimension space, and to make the ones from the different cluster further, which is beneficial to preserve the homogeneous characteristics for classification. We compared our method with other three methods for dimensionality reduction over the ORL face dataset and experiments show that Discriminant Isometric projection produces stable performance and good precision.\",\"PeriodicalId\":424264,\"journal\":{\"name\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2009.5207418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的监督降维方法——判别等距投影。其目的是对高维流形上同一聚类的数据点进行压缩,使其在低维空间上更加接近,同时对不同聚类的数据点进行进一步压缩,有利于保持分类的同质特征。在ORL人脸数据集上,将该方法与其他三种降维方法进行了比较,实验结果表明,判别等距投影具有稳定的性能和良好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discriminant Isomap projection
In this paper we proposed a novel supervised dimensionality reduction method, named Discriminant Isometric projection. The aim is to compact the data points from the same cluster on high-dimension manifold to make them closer in the low-dimension space, and to make the ones from the different cluster further, which is beneficial to preserve the homogeneous characteristics for classification. We compared our method with other three methods for dimensionality reduction over the ORL face dataset and experiments show that Discriminant Isometric projection produces stable performance and good precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信