基于noma的多址边缘计算系统的动态资源调度和频率缩放

Li Cui, Xin Chen, Zhuo Ma
{"title":"基于noma的多址边缘计算系统的动态资源调度和频率缩放","authors":"Li Cui, Xin Chen, Zhuo Ma","doi":"10.1109/SmartIoT55134.2022.00040","DOIUrl":null,"url":null,"abstract":"Merging Multi-access edge computing (MEC) and non-orthogonal multiple access (NOMA) into the sixth generation (6G) Internet of Things (IoT) can satisfy the computationally intensive task's requirement of extensible and low-energy consumption service. However, it is challenging to assigning task in MEC system due to that the channel transforms over time in dynamically varying network environments. In this paper, we propose a dynamic resource scheduling and frequency scaling algorithm (DRSFS) to allocate tasks and MEC frequency optimally. On the basis of Lyapunov optimization technique, DRSFS converts the long-range random optimization problem to a suite of determinate sub-problems and obtain the optimal solution. DRSFS can obtain an optimal offload strategy by utilizing dynamic programming theory, which can be verified by the effects of different parameters. The simulation experiment results shows the superiority of DRSFS by comparing it with other two baseline algorithms in the field of the energy consumption and the queue length.","PeriodicalId":422269,"journal":{"name":"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Resource Scheduling and Frequency Scaling in NOMA-Based Multi-access Edge Computing System\",\"authors\":\"Li Cui, Xin Chen, Zhuo Ma\",\"doi\":\"10.1109/SmartIoT55134.2022.00040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Merging Multi-access edge computing (MEC) and non-orthogonal multiple access (NOMA) into the sixth generation (6G) Internet of Things (IoT) can satisfy the computationally intensive task's requirement of extensible and low-energy consumption service. However, it is challenging to assigning task in MEC system due to that the channel transforms over time in dynamically varying network environments. In this paper, we propose a dynamic resource scheduling and frequency scaling algorithm (DRSFS) to allocate tasks and MEC frequency optimally. On the basis of Lyapunov optimization technique, DRSFS converts the long-range random optimization problem to a suite of determinate sub-problems and obtain the optimal solution. DRSFS can obtain an optimal offload strategy by utilizing dynamic programming theory, which can be verified by the effects of different parameters. The simulation experiment results shows the superiority of DRSFS by comparing it with other two baseline algorithms in the field of the energy consumption and the queue length.\",\"PeriodicalId\":422269,\"journal\":{\"name\":\"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"volume\":\"162 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartIoT55134.2022.00040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartIoT55134.2022.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将多址边缘计算(MEC)和非正交多址(NOMA)融合到第六代(6G)物联网(IoT)中,可以满足计算密集型任务对可扩展和低能耗业务的需求。然而,在动态变化的网络环境中,由于信道随时间的变化,在MEC系统中分配任务具有挑战性。在本文中,我们提出一种动态资源调度和频率缩放算法(DRSFS)来优化分配任务和MEC频率。DRSFS在Lyapunov优化技术的基础上,将远程随机优化问题转化为一组确定的子问题,得到最优解。DRSFS利用动态规划理论得到了最优的卸载策略,并通过不同参数的影响进行了验证。仿真实验结果表明,与其他两种基线算法相比,DRSFS算法在能耗和队列长度方面具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Resource Scheduling and Frequency Scaling in NOMA-Based Multi-access Edge Computing System
Merging Multi-access edge computing (MEC) and non-orthogonal multiple access (NOMA) into the sixth generation (6G) Internet of Things (IoT) can satisfy the computationally intensive task's requirement of extensible and low-energy consumption service. However, it is challenging to assigning task in MEC system due to that the channel transforms over time in dynamically varying network environments. In this paper, we propose a dynamic resource scheduling and frequency scaling algorithm (DRSFS) to allocate tasks and MEC frequency optimally. On the basis of Lyapunov optimization technique, DRSFS converts the long-range random optimization problem to a suite of determinate sub-problems and obtain the optimal solution. DRSFS can obtain an optimal offload strategy by utilizing dynamic programming theory, which can be verified by the effects of different parameters. The simulation experiment results shows the superiority of DRSFS by comparing it with other two baseline algorithms in the field of the energy consumption and the queue length.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信